
Efficient Multiplication of Polynomials on

Graphics Hardware

Pavel Emeliyanenko

Max-Planck-Institut für Informatik, Saarbrücken, Germany
asm@mpi-inf.mpg.de

Abstract. We present the algorithm to multiply univariate polynomials
with integer coefficients efficiently using the Number Theoretic transform
(NTT) on Graphics Processing Units (GPU). The same approach can be
used to multiply large integers encoded as polynomials. Our algorithm
exploits fused multiply-add capabilities of the graphics hardware. NTT
multiplications are executed in parallel for a set of distinct primes fol-
lowed by reconstruction using the Chinese Remainder theorem (CRT)
on the GPU. Our benchmarking experiences show the NTT multiplica-
tion performance up to 77 GMul/s1. We compared our approach with
CPU-based implementations of polynomial and large integer multiplica-
tion provided by NTL and GMP2 libraries.

Keywords: large integer arithmetic, parallel computations, graphics
hardware, GPU, CUDA.

1 Introduction

Large integer and polynomial arithmetic constitutes the core of many scientific
computations. For instance, algorithms in algebraic geometry involve a substan-
tial amount of symbolic computations performed over integer polynomials in
one or more variables (e.g., polynomial subresultants and derived quantities [5]).
The performance of public key cryptosystems also relies on the efficiency of large
integer arithmetic.

Schönhage and Strassen [21] have shown that the Number Theoretic trans-
form (NTT), as generalization of discrete Fourier transform to finite fields, is
asymptotically the fastest known way to multiply two large integers. Moreover,
the inherent parallel structure of the NTT and the absence of round-off errors, as
opposed to floating-point Fourier transforms, makes it very tempting candidate
for realization on parallel architectures. Unfortunately, the graphics hardware,
driven by the needs of the game industry, was originally designed for efficient
low-precision floating-point arithmetic.

1 GMul/s stands for “109 modular multiplications per second”, not to confuse with
GFlop/s, see Section 6 for explanations.

2 NTL: http://www.shoup.net/ntl, GMP: http://gmplib.org

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 134–149, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.shoup.net/ntl
http://gmplib.org


Efficient Multiplication of Polynomials on Graphics Hardware 135

Although floating-point Fourier transforms are also applicable to integer con-
volutions3, the number of bits to be stored in a floating-point number to guar-
antee the provably correct rounding is substantially limited (see [20] for precise
estimates). As a result, single-precision floating-point is practically not applica-
ble for error-free integer convolutions, while the double-precision arithmetic is
still relatively slow on modern GPUs. The NVIDIA’s CUDA API [2] makes it
possible to utilize graphics processors for integer computations.

Main contribution. we present the algorithm to compute integer polynomial
products using the NTT on graphics processors. We use efficient 24-bit modular
multiplication which reflects the native multiplication capabilities of the GPU.
Our algorithm operates on partially reduced 24-bit residues represented by 32-
bit integers, deferring the final reduction as long as possible. This enables us
to avoid a great deal of expensive operations. Optimized FFT-kernels utilize
fused multiply-add capabilities of the graphics hardware. The reconstruction
of convolution digits is performed on the GPU using the Chinese Remainder
theorem (CRT) allowing us to multiply polynomials with moderate coefficient
bit-length entirely on the GPU.

The remaining part of the paper is structured as follows. In Section 2 we survey
existing algorithms for modular techniques and large integer multiplication on
parallel architectures. Section 3 gives an overview of 3D graphics hardware and
CUDA programming model. Some background theory underlying the Number
Theoretic transforms and the CRT reconstruction is presented in Section 4. In
Section 5 we discuss the algorithm and its mapping to the GPU in detail. Then,
in Section 6 we compare our algorithm with existing CPU-based implementations
and draw conclusions in Section 7.

2 Related Work

Over the past years there was a lot of research carried out to implement effi-
cient FFT algorithms on graphics processors ([10], [1], [17]). Unfortunately, all
of them operate in a single-precision floating-point arithmetic and, hence, are
not suitable for integer convolutions. There were attempts to emulate extended
precision using a pair or a quad of low-precision floating-point numbers ([12],
[11]). However, this leads to rather complicated arithmetic operations thereby
annihilating all the advantages of the floating-point and, moreover, it doubles
the memory bandwidth between the host and the graphics card which is a major
performance killer for GPU algorithms.

There are two recent papers employing modular techniques on the GPU ([18],
[24]). Despite the fact that they are concentrated on the acceleration of modu-
lar exponentiation, it is interesting within our context how they deal with the
modular reduction after multiplication.

The authors of [18] used a traditional shader approach to program the GPU.
As a result, they could only handle integers that fit the floating-point mantissa
3 By convolution we mean here the integer polynomial product (acyclic convolution)

which is a cyclic convolution of zero-padded sequences, see Section 4.



136 P. Emeliyanenko

(24 bits). They suggested to use composite moduli consisting of 2 primes whose
product fits in 24 bits. Hence, unfolding the CRT over these two primes, the
modular multiplication can proceed without intermediate values that exceed 24
bits. We find that this method involves too many arithmetic operations and does
not take any advantage of the floating-point nature of the arithmetic.

The second paper [24] used CUDA framework and all computations were
carried out in integer arithmetic. The authors reported that, while the graphics
hardware supports fast 24-bit integer multiplication, CUDA does not expose an
intrinsic to obtain the most-significant 16 bits of the product. Therefore, they
were constrained to use full 32-bit moduli and slow 32-bit multiplication. Luckily,
we have been able to deal with this limitation (see Section 5.3). Unfortunately,
their paper does not explain in a concrete way how the 32-bit modular reduction
is realized.

An interesting approach to large integer multiplication on parallel archi-
tectures appears in [8]. It uses multi-dimensional Fermat Number transform
(FNT)4. Although, the FNT has clear advantages credited to Schönhage and
Strassen, we believe that the modular approach with CRT is more suitable for
GPU implementation because of its relative simplicity (as opposed to multi-
dimensional transform) and flexibility since it allows us to convolve variable
length sequences using the same transform length. On the contrary, dimension-
ality of the FNT depends on the length of input sequences. Moreover, according
to [8], 1024-point FNT requires 213 processors arranged in a 4-dimensional hy-
percube to work cooperatively. This number exceeds by far the maximal number
of threads allowed per one GPU’s thread block while threads of different blocks
cannot communicate with each other directly (see Section 3).

3 Overview of the GPU Architecture and CUDA
Framework

In this overview we only consider the GPUs with NVIDIA Tesla architecture [16].
However, the new standard for heterogeneous programming OpenCL [19] will
provide a unified API (which is very similar to that of CUDA) and will be
supported by many other vendors. The NVIDIA Tesla architecture unifies vertex
and fragment processors in streaming multiprocessors (SMs) that can execute
any shader programs as well as general-purpose parallel programs. For instance,
GeForce GTX 280 GPU contains 30 SMs.

The GPU executes instructions in a SIMT – single-instruction, multiple-thread
– fashion. In other words, the SM’s instruction issue unit (MT issue, see Figure 1)
applies a single instruction to a group of 32 threads called warps. As a result,
threads of a single warp are always executed synchronously. When the threads
follow different execution paths (diverge on a branch instruction), the warp has
to serially execute all taken branch paths. The full efficiency is attained when
4 A well-known restriction of using Fermat ring to compute convolutions relates to the

fact that the maximal transform length is proportional to the modulus bit-length.
Multi-dimensional techniques are supposed to overcome this difficulty.



Efficient Multiplication of Polynomials on Graphics Hardware 137

SP SP

SP SP

SP SP

SP SP

SFUSFU

C cache

shared
memory

MT issue

I cache

SM

SP SP

SP SP

SP SP

SP SP

SFUSFU

C cache

shared
memory

MT issue

I cache

SM

geometry controller

SM controller

tex L1 cache
Texture unit

TPC

block
(1,0)

block
(2,0)

block
(0,1)

block
(0,0)

(2,1)
blockblock

(1,1)

CPU serial
code Inter−grid synchronisation barrier

launch 1

launch 2
GPU grid

GPU grid Data grid 1

(1,0)
thread
(2,0)

thread
(2,1)

thread
(0,1)

thread
(0,2)

thread
(1,2)

thread
(2,2)

Block (1,1)

(1,1)
thread

thread

Data grid 2

Pe
r−

th
re

ad
 r

eg
is

te
r 

fi
le

an
d 

lo
ca

l m
em

or
y T
ex

tu
re

/c
on

st
an

t m
em

or
y

G
lo

ba
l m

em
or

y
sh

ar
ed

 m
em

or
y

Pe
r−

C
T

A(0,0)
thread

Fig. 1. Texture/processor cluster (TPC) comprising two SMs (left); CUDA execution
model, thread and memory hierarchy (right)

a branch condition is warp-aligned. Different warps are independent from each
other and can execute disjoint paths without penalties.

Each SM contains two special function units (SFU) and eight streaming
processors cores (SP), see Figure 1. The SM processes simple arithmetic in-
structions in four clock cycles for the entire warp. These instructions also in-
clude single-precision floating-point multiply/multiply-add and 24-bit integer
multiply/multiply-add. Integer division and modulo are particularly costly and
should be avoided, we use floating-point arithmetic instead.

CUDA is a heterogeneous serial-parallel programming model, i.e., a parallel
GPU code is interleaved with a serial code executed on the host (see Figure 1). On
the top level, threads are grouped into cooperative thread arrays (CTAs) or thread
blocks. Each block consists of up to 512 concurrent threads which execute the
same CUDA code, can share the results of computations and synchronize their
execution with barriers. In its turn, blocks are organized in a grid of thread blocks
which is launched on a single CUDA program. Threads of different blocks cannot
communicate with each other explicitly but can share the results by means of
global memory5. Inter-grid synchronization can be achieved by serialized grid
launches. The CTA model implements a coarse-grained parallelism as opposed
to fine-grained parallelism achieved by warps.

Memory system of the GPU is organized as follows: each thread has its own
register file. The SM has a fixed number of registers split evenly between threads
of a block, by exceeding this amount registers get spilled into slow local memory

5 Block independence naturally comes from the scalability requirements allowing a
binary program to run unchanged on any number of SMs. However, it imposes
additional difficulties in algorithms’ realization. In this respect, we find the Intel’s
Larrabee architecture more advantageous, see Section 7.



138 P. Emeliyanenko

residing in external DRAM. All threads within a single block can access the fast
on-chip shared memory (see Figure 1). It is organized in 16 banks in such a way
that consecutive addresses are mapped to different banks. If all 16 threads of a
half-warp access memory from different banks, no delays occur. Memory accesses
with a stride s where GCD(s, 16) �= 1 lead to bank conflicts and are serialized6.
The remaining three memory spaces – read-write global memory and read-only
constant and texture memory – are visible to all threads of the entire grid. Global
memory is not cached and has much higher latency than shared memory, it is
important to access it in a way that separate memory accesses of a half-warp
can be coalesced in a single wide memory access. A good programming practise
is to preload data from global memory at once, and then use shared memory
for subsequent computations. Constant memory has on-chip cache, amortized
access to it is fast provided that all threads of a warp read the same address.
Texture memory is also cached and optimized for 2D spatial locality.

High memory access latencies can be hidden as long as the code has high
arithmetic intensity and the SM has enough warps to switch between in order
to interleave memory access with ALU operations.

4 Mathematical Preliminaries

In this section we overview some basic facts from the number theory underlying
fast multiplication algorithms in finite fields and recall the Chinese remainder
theorem (CRT) to recover multidigit result after modular multiplication.

4.1 Number Theoretic Transforms and Fast Convolutions

The forward and backward Number Theoretic transforms are defined respec-
tively as follows:

Xk ≡m

N−1∑

j=0

xjα
jk and xj ≡m N−1

N−1∑

k=0

Xkα−jk,

where j, k = 0, . . . , N −1, all arithmetic is performed over Z/mZ and α is an N-
th primitive root of unity (an element of order N). The necessary and sufficient
conditions for existence of such transforms are [7]:

– N | GCD{(pi − 1), i = 1, . . . , l}, where m =
∏l

i=1 pri

i ;
– GCD(N, m) = 1 (existence of modular inverse);
– αs �= 1 (mod m) : ∀s = [1, 2, . . . , N − 1].

A cyclic convolution of two length-n sequences a = [a0 . . . an−1] and b =
[b0 . . . bn−1] is a length-n sequence h = a ∗ b with hj =

∑n−1
i=0 aib(j−i) mod n.

Once the conditions above are satisfied, the transform possesses the so-called

6 Bank conflicts only occur within a half-warp – a group of 16 threads.



Efficient Multiplication of Polynomials on Graphics Hardware 139

cyclic convolution property (CCP) allowing for fast convolutions in Z/mZ. The
CCP states that if

Xk ≡m

N−1∑

j=0

xjα
jk and Yk ≡m

N−1∑

j=0

yjα
jk , then for h = x ∗ y,

hj ≡m N−1
N−1∑

k=0

Hkα−jk where Hk ≡m Xk · Yk.

Accordingly, the usual polynomial product of a and b, defined as
rj =

∑n−1
i=0 aibj−i, is a cyclic convolution of zero-padded sequences, i.e.,

[an/2 . . . an−1] = 0 and [bn/2 . . . bn−1] = 0. To multiply two K-bit integers using
this technique, they are first partitioned into N/2 chunks of P = 2K/N bits
each, where N is the size of the transform. Then, the resulting sequences a and
b are zero-padded and convolved, i.e., r ≡m a ∗ b. The modulus m is chosen to
be large enough so that the “convolution digits” are recovered exactly (see esti-
mates in Section 5.1). Finally, one obtains the resulting product by evaluating:
z =

∑N−1
i=0 ri · 2Pi.

In our approach we use 24-bit prime moduli of the form m = 2n · k + 1 (for
transforms of length 2n). The reasons for that are: first, the number of 24-bit
primes of this form is considerably large, which is suitable for the CRT recon-
struction. Second, the modular reduction with 24-bit primes can be performed
efficiently in floating-point arithmetic.

4.2 Chinese Remainder Theorem

Let (m1, m2, . . . , mk) be pairwise coprime moduli and M =
∏k

i=1 mi (M is called
dynamic range). Then, for the set of residues (x1, x2, . . . , xk) with 0 ≤ xi < mi

(1 ≤ i ≤ k) there exists a unique X (0 ≤ X < M), such that: xi = X mod mi.
A classical approach for incremental Chinese remaindering is the one of Szabo

and Tanaka [23] based on Mixed Radix System (MRS). Here X is defined by the
associated mixed-radix digits (α1, α2, . . . , αk) in the following way:

X = α1M1 + α2M2 + . . . + αkMk

where M1 = 1, Mj = m1m2 . . .mj−1 (2 ≤ j ≤ k). We omit precise formulae for
αi for brevity. There exist efficient MRS conversion algorithms based on look-up
tables (see [14], [3]), however the size of the tables they require is proportional
to the modulus bit-length which draw them impractical for the GPUs7. We
have decided in favour a simple algorithm from [25] which rearranges Szabo and
Tanaka formulae in a more structured way, thereby exposing some parallelism.
The αi are computed as below (1 ≤ i ≤ k):

α1 = x1, α2 = (x2 − α1)c2 mod m2

7 Using large look-up tables residing in external DRAM turn to be inefficient on the
GPU due to the high memory latencies and the lack of gather operation.



140 P. Emeliyanenko

α3 = ((x3 − α1)c3 − (α2M2c3 mod m3)) mod m3

αi = ((xi − α1)ci − (α2M2ci mod mi)− . . .

−(αi−1Mi−1ci mod mi)) mod mi

where ci = (m1m2 . . . mi−1)−1 mod mi. Here ci and Mjci mod mi can be pre-
computed in advance.

5 Mapping Multiplication Algorithm to Graphics
Processor

In this section we consider the multiplication algorithm step-by-step. First, we
present our approach at a high-level to give the reader an intuitive feeling about
the algorithm. Then, we describe how the FFT algorithm is mapped to the
graphics hardware to achieve even work distribution between threads. The next
sections cover the efficient modular reduction and optimizations aimed to utilize
fused multiply-add capabilities of the GPU and reduce the amount of reductions
using redundant residue representation. At the end, we discuss how the CRT
reconstruction is realized on the graphics processor.

5.1 Algorithm Overview

The multiplication on the GPU proceeds as follows: we are given a set of N
integer polynomials of degree at most 2n−1, where 2n is the size of the transform8.
Polynomials of higher degree can be processed by encoding them in fixed degree
polynomials using the binary segmentation [9]. Large integers are handled by
partitioning them into respective number of pieces.

Each piece (or polynomial coefficient) is reduced modulo a set of distinct 24-bit
primes, the number of primes K is chosen such that the resulting products can
be recovered exactly9. The GPU executes N ×K NTT modular multiplications
in parallel. Once all products are ready, another kernel groups every K modular
products and recovers multiprecision digits using the CRT (see Section 5.5). K
is chosen to be small enough (typically K < 10), so that the CRT reconstruction
can proceed entirely on the GPU. However, this is not a restriction – the GPU
can run modular convolutions for large values of K and recover multiprecision
digits only partially, leaving the final reconstruction for the CPU.

The number of primes required to recover the product of two large integers is
estimated as follows: each “digit” after 2n-point convolution is bounded by 22M ·
2n−1, where M is a bit-length of an input sequence digit. Hence, a “convolution
digit” has at most 2M +n−1 bits. For the CRT reconstruction with c primes, it
holds that: 2M+n−1 = 23·c or Mc = (23·c−n+1)/2, here we assumed that each
prime is 23-bits long on the average. Thus, c convolutions with different moduli
8 Recall that, the input sequences must be initially zero-padded, hence these numbers.
9 For small values of K, the initial modular reduction can be done directly on the

graphics processor.



Efficient Multiplication of Polynomials on Graphics Hardware 141

ra
di

x−
8 

st
ep

 3

ra
di

x−
8 

st
ep

 2

ra
di

x−
8 

st
ep

 1

ra
di

x−
8 

st
ep

 3

ra
di

x−
8 

st
ep

 2

ra
di

x−
8 

st
ep

 1

po
in

tw
is

e 
m

od
ul

ar
 m

ul
tip

lic
at

io
n

Two radix−8 512−pt NTTs radix−4 512−point inverse NTT

ra
di

x−
4 

st
ep

 3

ra
di

x−
4 

st
ep

 4

16
x1

6 
m

at
. t

ra
ns

p.

ra
di

x−
4 

st
ep

 2

ra
di

x−
4 

st
ep

 1

ra
di

x−
4 

st
ep

 3

ra
di

x−
4 

st
ep

 4

16
x1

6 
m

at
. t

ra
ns

p.

ra
di

x−
4 

st
ep

 2

ra
di

x−
4 

st
ep

 1

64
 th

re
ad

s
64

 th
re

ad
s

64
 th

re
ad

s
64

 th
re

ad
s

(0
..5

11
)

(0
..5

11
)

64
 th

re
ad

s
ra

di
x−

8 
51

2−
pt

 N
T

T
64

 th
re

ad
s

64
 th

re
ad

s
64

 th
re

ad
s

in
ve

rs
e 

tr
an

sf
or

m

64
 th

re
ad

s
b−

th
 o

ut
pu

t o
f

b−
th

 o
ut

pu
t o

f
ra

di
x−

4 
ke

rn
el

ra
di

x−
4 

ke
rn

el

ro
ot

s 
of

 u
ni

ty
 (

0.
.5

11
)

in
v.

 r
ad

ix
−

4 
ke

rn
el

operand A (0..1023)

operand B (0..1023)

pr
ec

om
pu

te
 tw

id
dl

e 
fa

ct
or

s 
fo

r 
51

2−
pt

 N
T

T

po
in

tw
is

e 
m

ul
tip

lic
at

io
n 

(1
28

 th
re

ad
s)

20
48

−
pt

 in
ve

rs
e 

N
T

T
 b

y 
2 

bl
oc

ks
 (

b 
=

 0
,1

)

ra
di

x−
8 

51
2−

pt
 N

T
T

in
v.

 r
ad

ix
−

4 
ke

rn
el

64
 th

re
ad

s

in
ve

rs
e 

ro
ot

s 
of

 u
ni

ty
(0

..5
11

)
b−

th
 h

al
f 

of
 a

 s
eq

ue
nc

e
to

 tr
an

sf
or

m
 (

0.
.1

02
3)

m
ul

. b
y 

in
v.

 r
oo

ts
 o

f 
un

ity
 (

12
8 

th
re

ad
s)

64
 th

re
ad

s
ra

di
x−

8 
51

2−
po

in
t

in
ve

rs
e 

N
T

T

64
 th

re
ad

s
ra

di
x−

8 
51

2−
po

in
t

in
ve

rs
e 

N
T

T

(0
..2

55
)

op
er

an
d 

A
(0

..1
27

)
(0

..2
55

)
op

er
an

d 
B

m
ul

tip
lic

at
io

n 
by

 m
od

ul
ar

 in
ve

rs
e

pr
ec

om
pu

te
 tw

id
dl

e 
fa

ct
or

s 
fo

r 
in

v.
 N

T
T

ra
di

x−
2 

pr
es

te
p 

(1
28

 th
re

ad
s)

pr
ec

om
pu

te
 tw

id
dl

e 
fa

ct
or

s

ro
ot

s 
of

 u
ni

ty

pr
ec

om
pu

te
 tw

id
dl

e 
fa

ct
or

s 
fo

r 
51

2−
pt

 N
T

T

m
ul

tip
lic

at
io

n 
by

 m
od

ul
ar

 in
ve

rs
e

20
48

−
pt

 f
or

w
ar

d 
N

T
T

 b
y 

4 
bl

oc
ks

 (
b 

=
 0

..3
)

Fig. 2. Schematic view of 512-point (left) and 2048-point (right) NTT multiplication
on the GPU

are enough to multiply numbers of 2n−1Mc bit-length. For example, with c = 4,
2048-point transform can be used to multiply integers having at most 1024 · 41
bits each (1312 32-bit machine words).

5.2 The FFT Algorithm

Parallel FFT algorithms are commonly based on the Stockham out-of-place FFT.
We use Bailey’s variation of this algorithm [4]. This is a self-sorting algorithm,
such that an expensive index permutation phase (as opposed to the classical
Cooley-Tukey FFT [6]) can be skipped. Moreover, all data fetches and stores
are performed solely with unit strides, hence, no bank conflicts occur. Roots of
unity are still accessed with power-of-two strides but this can be alleviated by
storing the roots in contiguous arrays for each FFT step. In contrast to floating-
point transforms, the roots of unity in Z/mZ cannot be computed on-the-fly, but
must be precomputed in advance and loaded to the GPU. We have implemented
Bailey’s FFT for transform sizes 512, 1024 and 2048.

Figure 2 depicts the mapping of 512- and 2048-point NTTs to the
graphics hardware, 1024-point transform is realized by analogy. The core
of the algorithm constitute radix-2, -4 and -8 kernels (or “butter-
fly” operations). The radix-n FFT-kernel is defined as: [y0, . . . , yn−1] =
Fndiag(1, αk, . . . , α(n−1)k)[x0, . . . , xn−1], where αk is a twiddle factor and Fn

is an n × n Fourier matrix, i.e., Fn = [wj·k
n ]j,k=0,...,n−1 (wn is an n-th root of

unity). In the following subsections we consider optimized FFT-kernels in detail.
The 512-point NTT multiplication is done by a single block of 128 threads,

after each radix-4/-8 step the data is reordered in shared memory. The forward
2048-point transform is run by 4 blocks collectively, they first evaluate a radix-4
kernel for both multiplicands. Then, the outputs are split evenly between the
blocks, each single block processes its parts, multiplies them elementwise and
runs the first radix-4 step of the inverse transform. By multiplying the operands
early in the forward kernel, we effectively reduce the memory bandwidth be-
cause only one (resulting) sequence is written out to global memory. The inverse



142 P. Emeliyanenko

Algorithm 1. 24-bit modular multiplication: computes a · b mod m

1: procedure mul mod(a, b, m, invm) � invm = 216/m (in floating-point)
2: hi = umul24hi(a, b) � compute upper 32 bits of the product
3: prodf = fmul rn(hi, invm) � multiplication in floating-point
4: l = float2uint rz(prodf) � integer truncation: l = �hi · 216/m�
5: return ( umul24(a, b) − umul24(l, m)) � in [−m + ε; m + ε] with 0 ≤ ε < m
6: end procedure

2048-point NTT is run by 2 blocks, each block transforms its 1024-element part
separately.

5.3 Multiplication and Modular Reduction

The reason for choosing 24-bit primes was that the graphics hardware does not
support a full 32-bit integer multiplication natively. It provides only 24-bit mul-
tiplication realized in mul24.lo/hi instructions10. mul24.lo computes multiplies 24
least significant bits (LSB) of the operands and returns 32 LSB of 48-bit product,
it is available via umul24 intrinsic. mul24.hi returns 32 most significant bits of
the product respectively. Strangely enough, it is not accessible from a high-level
CUDA code. Fortunately, we have been able to rebuild the nvopencc (which is
based on open64) from sources to insert the “missing intrinsic”, in what follows
we will refer to it as umul24hi11.

Having all prerequisites at hand, we now discuss how the modular arithmetic
is realized on the GPU. We consider only modular multiplication in detail (see
Algorithm 1) as the remaining operations (addition and subtraction) are rather
trivial. Algorithm 1 splits the product in two parts, i.e., a · b = 216hi + lo (32
and 16 bits), and the following holds (0 ≤ r < m):

216hi + lo = (m · l + r) + lo ≡m r + lo = 216hi + lo−m · l = a · b− l ·m

Observe that, l = �216hi/m� is at most 24-bits long, thus it is exactly repre-
sentable with 24-bit mantissa. Let γ = a · b− l ·m = lo + r, hence γ ∈ [0; m + ε]
(0 ≤ ε < m)12. As a result, γ fits into 32 bits and is computed as a difference of
32 LSB of both products using umul24 intrinsic. The final reduction needs two
additional steps to map the range [−m + ε; m + ε] to [0; m − 1]. Owing to the
redundant representation of residues, these steps can be deferred until the next
modular multiplication takes place. We discuss this and other optimizations in
the following section.

10 The 32-bit integer multiplication gets demoted to a more primitive operations and
is 4 times slower than its 24-bit counterpart.

11 The compiler built for Linux platform with a set of new intrinsics is available at
http://www.mpi-inf.mpg.de/~emeliyan/cuda-compiler

12 According to our tests, γ ∈ [−m+ε;m+ε] due to the loss of accuracy when converting
hi to floating-point but this is not critical for us.

http://www.mpi-inf.mpg.de/~emeliyan/cuda-compiler


Efficient Multiplication of Polynomials on Graphics Hardware 143

Algorithm 2. Realization of radix-2 kernel (fma bfy2) and modular reduction
of 32-bit operand (reduce mod)
1: procedure fma bfy2(x0, x1, w, m, invm) � invm = 216/m (in floating-point)
2: hi = umul24hi(x1, w) � compute upper 32 bits of the product
3: prodf = hi ∗ invm + 2.0f � floating-point multiply-add
4: l = float2uint rz(prodf) � integer truncation: l = �hi · 216/m� + 2
5: y0 = x0 + umul24(x1, w) − umul24(l, m) � a pair of 24-bit multiply-adds
6: return [y0, sad(x0, y0, x0)] � y1 = |x0 − y0| + x0 = 2x0 − y0

7: end procedure
8: procedure reduce mod(a, m, invm) � invm = 1/m (in floating-point)
9: ai = a + umul24(100, m) � make sure a is positive

10: af = fmul rn( uint2float rn(ai), invm) � multiply in floating-point
11: l = float2uint rz(af) � integer truncation: l = �a/m� + 100
12: r = ai − umul24(l, m) � r ∈ [−m + ε; ε] with 0 ≤ ε < m
13: if r < 0 then r = r + m � adjust the result in case of negative sign
14: return r
15: end procedure

5.4 FMA-Optimized FFT Kernels and Exploiting Redundancy in
Residue Representation

The graphics hardware has fused multiply-add (FMA) capabilities. Namely,
it supports floating-point FMA as well as 24-bit integer FMA instructions.
To achieve the full efficiency, it is therefore important to respect these hard-
ware features. In our implementation we use both of them. Our radix-4 and -8
FFT kernels are based on the FMA-optimized factorization of a matrix prod-
uct given in [15]. In its core it has a primitive radix-2 “butterfly” defined as
([y0, y1] = fma bfy2([x0, x1], w)): y0 ← x0 + x1 · w and y1 ← 2 · x0 − y0. Its real-
ization is given by procedure fma bfy2 of Algorithm 2. Remark that, y1 cannot
be computed with 24-bit FMA because x0 can exceed 24 bits (when redundant
representation is used). Remarkably, the GPU has a native sad(x, y, z) instruc-
tion which computes |x − y| + z. Thus, if we ensure that x0 − y0 > 0, we can
use sad to compute y1. We guarantee this by adding 2 to prodf in line 3 of the
algorithm. Indeed, x0 − y0 = l ·m− x1 · w = γ, and, according to the estimates
above, γ ∈ [−m + ε; m + ε]. Altogether, the fma bfy2 is compiled in 6 flops on
the GPU13.

Remark that, y0 and y1 in general are not valid residues, while umul24 can
only handle 24-bit operands. To this end, the argument x1 of the next fma bfy2
must be reduced prior to multiplication, this is achieved by procedure re-
duce mod of Algorithm 2. By adding 100·m to a we ensure that l = �a/m�+100
is positive and, hence, umul24(l, m) delivers the correct result14. We will refer to

13 Generated low-level GPU assembly code can be inspected using the decuda tool:
http://www.cs.rug.nl/~wladimir/decuda

14 It can be estimated that a never deviates from 0 by more than 100·m, thus, a+100·m
is guaranteed to be positive and fits within 32 bits.

http://www.cs.rug.nl/~wladimir/decuda


144 P. Emeliyanenko

reduce mod(x1) followed by fma bfy2([x0, x1, w]) as fma red bfy2. FMA-optimized
radix-4 kernel is defined below ([y0, . . . , y3] = fma bfy4([x0, . . . x3], u)):

[d0, d1] = fma red bfy2([x0, x2], u2) [d2, d3] = fma red bfy2([x1, x3], u2)
[y0, y2] = fma red bfy2([d0, d2], u) [y1, y3] = fma red bfy2([d1, d3], u · w4),

here u = αk denotes a twiddle factor and w4 is 4-th root of unity. Radix-8
kernel is realized by analogy. Note that, the first step of the FFT algorithm
does not need any twiddle factors and FFT-kernels are simplified. Moreover, the
input sequences are initially zero-padded, hence the first stage of the forward
transform can be simplified even further.

The redundancy in residue representation is exploited as follows: modular re-
ductions after addition/subtraction as well as correction steps after multiplication
are performed on demand only. In other words, they are deferred until either the
next multiplication takes place or until the very last stage of the NTT algorithm.

5.5 CRT Reconstruction on the GPU

Owing to the fact that each “convolution digit” is recovered independently, it is
advantageous to run the CRT reconstruction directly on the GPU provided that
the number of moduli k is small (typically k ≤ 10). We compute the MRS digits
αi defined in Section 4.2 in a straightforward way. Threads are split logically
into groups of P = (k − 2)/2 threads each. We require P to be a power-of-two,
so that the groups of P threads are always warp-aligned and access to shared
memory proceeds without synchronization. We have chosen the block size of 64
threads15.

We assume that the moduli are sorted, i.e., m1 < m2 < . . . < mk. Thus, for
respective residues x1, x2, . . . , xk, it holds that xi < mj for 1 ≤ i < j ≤ k. This
enables us to save on reductions when the quantities of the form (xj−xi) mod mj

are computed. Each thread computes two values of xi in one step (we refer to
them by δ = {1, 2}). Let j = 1 . . . k/2, the algorithm takes k − 1 steps:

step 1: for threads i = 1 . . . P : x2i+δ ← (x2i+δ − x1)c2i+δ mod m2i+δ. For the
1st thread additionally: x2 ← (x2 − x1)c2 mod m2;

step (2j): for threads i = j . . . P : x2i+δ ← (x2i+δ − x2jM2jc2i+δ) mod m2i+δ;
step (2j + 1): for threads i = j − 1 . . . P : x2i+δ ← (x2i+δ −

x2j−1M2j−1c2j+δ) mod m2j+δ, a thread i = j − 1 computes only x2i+2.

The number of threads involved decrements every 2 steps, this way we achieve
sufficiently even work distribution. We use precomputed values for ci and
sl

i = Mlci mod mi defined in Section 4.2. Once MRS digits are computed, the
resulting “convolution digit” is recovered as: X = α1M1 + α2M2 + . . . + αkMk.
We extract some parallelism by evaluating this expression in a “tree-like” fash-
ion. To realize multiprecision additions required here, we use addition-with-carry
intrinsics provided by our nvopencc compiler.
15 As we only need P threads to work cooperatively, a small block size is reasonable

since the GPU has more freedom in scheduling light-weight blocks to hide memory
access latencies.



Efficient Multiplication of Polynomials on Graphics Hardware 145

6 Experimental Results and Comparison

We have tested our algorithm on the GeForce GTX 280 graphics processor and
compared it with GMP 4.2.1 (http://gmplib.org) for large-integer multipli-
cation and with NTL 5.5 (http://www.shoup.net/ntl) for polynomial multi-
plication. As a target CPU we have used Quad-Core Intel Xeon E5420 clocked
at 2.5Ghz with 12MB L2 cache and 8Gb RAM. Both libraries were built under
native 64-bit Linux platform (Debian Etch), such that they were able to benefit
from AMD64 instruction set.

For benchmarks we have implemented two versions of the CRT reconstruc-
tion: a completely inlined one using 4 moduli where each digit is processed sepa-
rately by a single thread, and the 6-moduli CRT which realizes the algorithm from
Section 5.5. The initial modular reduction of input digits was performed directly on
the GPU prior to modular multiplications because the digits’ bit-length is small.
The bit-length of numbers to be multiplied depending on the CRT size and the
transform length was estimated using the formula from Section 5.1. We use these
estimates to compare our multiplication with that of provided by GMP and NTL.
For instance, 1024-pointNTT with 6-moduli CRT is enough to multiply 512·64-bit
numbers exactly. Hence, GMP was used to multiply numbers of 512·64 bit-length,
while NTL – to multiply 512-degree polynomials with 64-bit coefficients.

Remark that, our algorithm does not perform the digit adjustment after mul-
tiplying two integers encoded as polynomials. In other words, we do not compute
the sum of “convolution digits”, i.e., z =

∑N−1
i=0 ri · 2Pi (see Section 4.1). Nev-

ertheless, we suppose this would not make our comparison with GMP unfair

 0

 100

 200

 300

 400

 500

 600

 700

 800

32x16
(128)

64x32
(512)

128x64
(2048)

256x64
(4096)

256x128
(8192)

256x256
(16384)

# of NTT-muls with 4-CRT (# of 256x41-bit muls for CPU)

512-point NTT mul
GMP 4.2.1

 0

 100

 200

 300

 400

 500

 600

 700

 800

32x8
(64)

64x16
(256)

128x32
(1024)

256x32
(2048)

256x64
(4096)

256x128
(8192)

# of NTT-muls with 4-CRT (# of 512x41-bit muls for CPU)

1024-point NTT mul
GMP 4.2.1

 0

 100

 200

 300

 400

 500

 600

 700

 800

32x8
(64)

64x16
(256)

128x32
(1024)

256x32
(2048)

256x64
(4096)

256x128
(8192)

# of NTT-muls with 4-CRT (# of 1024x41-bit muls for CPU)

2048-point NTT mul
GMP 4.2.1

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

48x16
(128)

96x32
(512)

192x32
(1024)

192x64
(2048)

192x128
(4096)

252x256
(10752)

# of NTT-muls with 6-CRT (# of 256x64-bit muls for CPU)

512-point NTT mul
GMP 4.2.1

NTL 5.4

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

48x8
(64)

96x16
(256)

192x16
(512)

192x32
(1024)

192x64
(2048)

252x128
(5376)

# of NTT-muls with 6-CRT (# of 512x64-bit muls for CPU)

1024-point NTT mul
GMP 4.2.1

NTL 5.4

Fig. 3. Time comparison of batched large integer/polynomial multiplication with
GMP/NTL implementations. Top row: 512-(left), 1024-(middle) and 2048-
point(right) NTTs with 4-moduli CRT. Bottom row: 512-(left) and 1024-point(right)
NTTs with 6-moduli CRT. All times are in milliseconds.

http://gmplib.org
http://www.shoup.net/ntl


146 P. Emeliyanenko

Table 1. Performance of the 512-point and 2048-point convolutions in “GMul/s”: 109

modular multiplications per second

# of 512-point NTTs 32x16 64x32 128x64 256x64 256x128 256x256

time (ms) 0.26 0.98 4.04 7.78 15.22 29.13
GMul/s 68 72 73 75 77 77

# of 2048-point NTTs 32x8 64x16 128x32 256x32 256x64 256x128

time (ms) 0.74 2.49 9.83 19.34 38.39 76.55
GMul/s 58 67 72 73 73 74

because this step is rather cheap as it only involves additions16. Moreover, the
digit adjustment is not required in case of polynomial multiplication.

Figure 3 shows the time comparisons for batched multiplications. The la-
bels along x-axes have the following meaning: for instance, on the top-left plot
32x16(128) denotes that the CPU performs 128 multiplications of 256× 41-bit
numbers while the GPU runs 16 512-point convolutions for each of 32 mod-
uli (total of 512 convolutions) since a group of every 4 moduli contributes to
a single multiplication. The GPU timing includes the time taken for memory
transfer to the GPU and back to the host for a more objective comparison.
We use page-locked memory to achieve higher bandwidth. From Figure 3 one
can see that the GPU is superior for batched multiplications with moderate
bit-lengths. Moreover, the gap increases for larger transforms. Increasing the
number of CRT moduli is also advantageous for our algorithm, although it is
yet unclear whether increasing the transform length or increasing the number
of moduli is overall more efficient. Note that, NTL performs worse than GMP
which is expectable because GMP uses hand-optimized assembly while NTL is
written in a high-level language.

Table 1 summarizes the “effective” performance of the NTT multiplication,
computed as: GMul/s = 10−9 · batch · (3 ·2.5N log2 N +2N)/t, here 2.5N log2 N
is the complexity of the Cooley-Tukey style NTT (N is the transform length), t
is the elapsed time in seconds and batch is the number of parallel multiplications.
Each multiplication uses 2 forward and 1 backward transform, hence, the factor
3 in front of the formula. The term 2N represents the complexity of the point-
wise multiplication and the multiplication by modular inverse. Remark that, the
Cooley-Tukey NTT bound counts the number of multiplications in Z/mZ. To
evaluate the “real” performance in flops recall that fma bfy2 realizing modular
multiplication executes in 6 flops (see Section 5.4). Hence, 77 GMul/s is roughly
equivalent to 462 GFlop/s of the real performance17, while the GeForce GTX
280 has peak parallel performance of 933 GFlop/s.

16 Carry propagation after mutliprecision addition can be realized efficiently, for in-
stance, using Hillis-and-Steele-style reductions [13].

17 It worth mentioning that the Cooley-Tukey bound tends to overestimate the number
of multiplications, nevertheless it is a commonly used tool to evaluate the FFT/NTT
performance.



Efficient Multiplication of Polynomials on Graphics Hardware 147

 0

 10

 20

 30

 40

 50

 60

 70

 80

128x64 256x64 256x128 256x256
number of NTT muls (mods x batches)

NTT convolution
4-moduli CRT
Mem. transfer

 0

 20

 40

 60

 80

 100

 120

192x16 192x32 192x64 252x128
number of NTT muls (mods x batches)

NTT convolution
6-moduli CRT
Mem. transfer

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

128x64 256x64 256x128 256x256
number of NTT muls (mods x batches)

NTT convolution
4-moduli CRT
Mem. transfer

Fig. 4. Time breakdown (in milliseconds) for 512-(left), 1024-(middle) and 2048-
point(right) transforms. Abbreviations along x-axis are the same as in Figure 3.

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 6 8
number of streams

256x64
256x128
256x256

Fig. 5. The number of parallel streams influencing the overall time (in milliseconds)
for 512-point NTTs including the memory transfer

Figure 4 depicts the time distribution over algorithm stages. Observe that, the
CRT reconstruction is rather cheap while the time needed for memory transfer
comprises the major part. This is known to be the main bottleneck for GPU
algorithms. Fortunately, CUDA allows us to split a single kernel launch into
several streams which execute asynchronously such that the memory transfer of
one stream can overlap with a kernel execution of another stream18. Figure 5
evaluates the performance of 512-point NTTs with several streams. The figure
shows that the optimal number of streams is 4.

To sum-up, our algorithm outperforms GMP and NTL for batched multipli-
cations with moderate bit-length. We agree that this is not an objective picture
because, for instance, GMP is particularly fast when the numbers of million bits
are multiplied. We were not able to benchmark our algorithm on such instances
due to the lack of implementation of larger transform lengths which is an object
of ongoing research. Still, we believe that the this gives a good estimate of what
the GPUs are practically capable of, because this area of GPU application is yet
not well-explored.

18 At the time of writing the new CUDA 2.2 has been released. It supports allocation
of pinned memory mapped to the device’s address space (cudaHostAllocMapped).
Due to the time limitations we have not been able to test its performance.



148 P. Emeliyanenko

7 Summary and Outlook

We have presented the algorithm to multiply polynomials on the GPU using the
NTT modular convolution with the CRT reconstruction. Our approach shows
a good performance for batched multiplication of polynomials with moderate
coefficient bit-length. Clearly, the approach presented here is only the first step
in realization of a robust large integer and polynomial arithmetic on the GPU.

Note that, this application domain is pretty novel for the graphics hardware
and we see many promising perspectives for future work. First, we would like
to increase the NTT transform length and make it adaptable to the bit-lengths
of numbers to be multiplied. Second, we would like to realize multiprecision
addition on the GPU using parallel reductions in order to be able to reconstruct
multiprecision numbers by means of binary segmentation. It is also worthwhile
to try out the technique called GPU virtualization given in [10] to handle inputs
that do not fit in a single grid launch due to the hardware limitations. Finally,
we would like to realize other algorithms requiring multiprecision arithmetic
on the GPU using the modular approach, for example, evaluation of matrix
determinants with large integer coefficients which is a fundamental operation in
many scientific fields.

We also find very promising the oncoming Intel’s Larrabee architecture [22]
and would like to test our algorithm with it. It has a number of salient features
lacked on the current GPUs. First, Larrabee’s 16-wide Vector Processing Unit
(VPU – somewhat similar to SM) supports double-precision arithmetic at full
speed19, which allows us to increase the moduli bit-length (up to 54 bits) or
employ floating-point transforms for integer convolutions. Second, Larrabee has
a coherent L2 cache, such that the data is transparently shared between all
processor cores (in contrast, GPU thread blocks can share data only through
a high-latency GDDR memory). This considerably simplifies the realization of
large FFT transforms which are realized by a hierarchy of grid launches on the
GPU. Moreover, Larrabee supports scatter/gather operations, i.e., VPU lanes
can access data at non-contiguous addresses while uncoalesced global memory
access by a half-warp is considerably slow and should be avoided.

Acknowledgements. We would like to thank Michael Kerber for reviewing the
paper and for useful and pragmatic suggestions.

References

1. CUDA CUFFT library. NVIDIA Corp. (2007)
2. NVIDIA CUDA: Compute Unified Device Architecture. NVIDIA Corp. (2007)
3. Akkal, M., Siy, P.: A new Mixed Radix Conversion algorithm MRC-II. J. Syst.

Archit. 53, 577–586 (2007)
4. Bailey, D.H.: A High-Performance FFT Algorithm for Vector Supercomputers.

International Journal of Supercomputer Applications 2, 82–87 (1988)

19 The GPU has only one double-precision FPU per SM, therefore the double-precision
arithmetic is 8 times slower than the single-precision.



Efficient Multiplication of Polynomials on Graphics Hardware 149

5. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry (Algo-
rithms and Computation in Mathematics). Springer, New York (2006)

6. Cooley, J.W., Tukey, J.W.: An Algorithm for the Machine Calculation of Complex
Fourier Series. Mathematics of Computation 19, 297–301 (1965)

7. Elliott, D.F., Rao, K.R.: Fast Transforms: Algorithms, Analyses, Applications.
Academic Press, Inc., Orlando (1983)

8. Fagin, B.S.: Large integer multiplication on hypercubes. J. Parallel Distrib. Com-
put. 14, 426–430 (1992)

9. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press, Cambridge (1999)

10. Govindaraju, N.K., Lloyd, B., Dotsenko, Y., Smith, B., Manferdelli, J.: High per-
formance discrete Fourier transforms on graphics processors. In: SC 2008, pp. 1–12.
IEEE Press, Los Alamitos (2008)

11. Graça, G.D., Defour, D.: Implementation of float-float operators on graphics hard-
ware. CoRR abs/cs/0603115 (2006)

12. Hida, Y., Li, X.S., Bailey, D.H.: Algorithms for Quad-Double Precision Floating
Point Arithmetic. In: Proceedings of the 15th Symposium on Computer Arithmetic,
pp. 155–162. IEEE Computer Society Press, Los Alamitos (2001)

13. Hillis, W.D., Steele Jr., G.L.: Data parallel algorithms. ACM Commun. 29,
1170–1183 (1986)

14. Huang, C.H.: A Fully Parallel Mixed-Radix Conversion Algorithm for Residue
Number Applications. IEEE Trans. Computers 32, 398–402 (1983)

15. Karner, H., Auer, M., Ueberhuber, C.W.: Accelerating FFTW by Multiply-Add
Optimization. Tech. rep., Institute for Applied and Numerical Mathematics, Vi-
enna University of Technology, TR1999-13 (1999)

16. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA Tesla: A Unified
Graphics and Computing Architecture. IEEE Micro. 28, 39–55 (2008)

17. Moreland, K., Angel, E.: The FFT on a GPU. In: HWWS 2003. Eurographics
Association, pp. 112–119. ACM Press, New York (2003)

18. Moss, A., Page, D., Smart, N.: Toward Acceleration of RSA Using 3D Graph-
ics Hardware. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS,
vol. 4887, pp. 364–383. Springer, Heidelberg (2007)

19. Munshi, A.: OpenCL: Parallel Computing on the GPU and CPU. SIGGRAPH
2008 (2008) (presentation)

20. Percival, C.: Rapid multiplication modulo the sum and difference of highly com-
posite numbers. Mathematics of Computation 72, 241, 387–395 (2003)

21. Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen. Computing 7,
281–292 (1971)

22. Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junk-
ins, S., Lake, A., Sugerman, J., Cavin, R., Espasa, R., Grochowski, E., Juan, T.,
Hanrahan, P.: Larrabee: a many-core x86 architecture for visual computing. ACM
Trans. Graph. 27, 1–15 (2008)

23. Szabo, N., Tanaka, R.: Residue arithmetic and its applications to computer tech-
nology. SIAM 11, 103–104 (1969)

24. Szerwinski, R., Güneysu, T.: Exploiting the Power of GPUs for Asymmetric Cryp-
tography. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp.
79–99. Springer, Heidelberg (2008)

25. Yassine, M.: Matrix Mixed-Radix Conversion For RNS Arithmetic Architectures
(1991)


	Efficient Multiplication of Polynomials on Graphics Hardware
	Introduction
	Related Work
	Overview of the GPU Architecture and CUDA Framework
	Mathematical Preliminaries
	Number Theoretic Transforms and Fast Convolutions
	Chinese Remainder Theorem

	Mapping Multiplication Algorithm to Graphics Processor
	Algorithm Overview
	The FFT Algorithm
	Multiplication and Modular Reduction
	FMA-Optimized FFT Kernels and Exploiting Redundancy in Residue Representation
	CRT Reconstruction on the GPU

	Experimental Results and Comparison
	Summary and Outlook



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




