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Zusammenfassung
Diese Arbeit beschäftigt sich mit neuen parallelen Algorithmen, die das Leistungspoten-
zial der Grafik-Prozessoren (GPUs) zur exakten Berechnungen mit ganzzahlige Poly-
nomen nutzen. Solche symbolische Berechnungen sind von großer Bedeutung zur Lösung
vieler Probleme aus der reellen algebraischen Geometrie. Für die effiziente Implemen-
tierung eines Algorithmus auf massiv-parallelen Hardwarearchitekturen, wie z.B. GPU,
ist vor allem auf eine hohe Datenparallelität zu achten. Unter Verwendung von Ergebnis-
sen aus der strukturierten Matrix-Theorie konnten wir die entsprechenden Operationen
mit Polynomen auf der Grafikkarte leicht übertragen. Außerdem zeigt eine Komplexität-
analyse im PRAM-Rechenmodell, dass die von uns entwickelten Verfahren eine deutlich
bessere Komplexität aufweisen als dies für die klassischen Verfahren der Fall ist.

Neben dem theoretischen Ergebnis liegt ein weiterer Schwerpunkt dieser Arbeit in der
praktischen Implementierung der betrachteten Algorithmen, wobei wir auf der Besonder-
heiten der Grafikhardware achten. Im Rahmen dieser Arbeit haben wir hocheffiziente
modulare Arithmetik entwickelt, von der wir erwarten, dass sie sich für andere GPU
Anwendungen, insbesondere der Public-Key-Kryptographie, als nützlich erweisen wird.
Darüber hinaus betrachten wir Algorithmen für die Lösung eines Systems von Polynom-
gleichungen, Topologie Berechnung der algebraischen Kurven und deren Visualisierung
welche in vollem Umfang von der GPU-Leistung profitieren können. Zahlreiche Experi-
mente belegen dass wir zur Zeit die beste Verfahren zur Verfügung stellen.

Diese Dissertation ist in englischer Sprache verfasst.

Abstract
This thesis presents novel parallel algorithms to leverage the power of GPUs (Graphics
Processing Units) for exact computations with polynomials having large integer coeffi-
cients. The significance of such computations, especially in real algebraic geometry, is
hard to undermine. On massively-parallel architectures such as GPU, the degree of data-
level parallelism exposed by an algorithm is the main performance factor. We attain high
efficiency through the use of structured matrix theory to assist the realization of relevant
operations on polynomials on the graphics hardware. A detailed complexity analysis, as-
suming the PRAM model, also confirms that our approach achieves a substantially better
parallel complexity in comparison to classical algorithms used for symbolic computa-
tions.

Aside from the theoretical considerations, a large portion of this work is dedicated
to the actual algorithm development and optimization techniques where we pay close
attention to the specifics of the graphics hardware. As a byproduct of this work, we
have developed high-throughput modular arithmetic which we expect to be useful for
other GPU applications, in particular, open-key cryptography. We further discuss the
algorithms for the solution of a system of polynomial equations, topology computation of
algebraic curves and curve visualization which can profit to the full extent from the GPU
acceleration. Extensive benchmarking on a real data demonstrates the superiority of our
algorithms over several state-of-the-art approaches available to date.

This thesis is written in English.
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1 Introduction

1.1 Problem statement

The goal of thesis is to develop a general framework as well as concrete algorithms to
speed-up symbolic computations on modern parallel architectures. By symbolic or alge-
braic computation one usually understands operations carried out by the computer to ma-
nipulate mathematical expressions in symbolic form rather then working with specific nu-
meric quantities or approximations represented by those symbols. With the development
of computer algebra systems, symbolic algorithms have become increasingly more impor-
tant by enabling a new level of computational complexity which was previously beyond
the reach of mathematicians. That is why, symbolic algorithms have been widely adopted
in many different areas of science and engineering. Many such algorithms have emerged
at the dawn of personal computer age, and have not been undergoing major change since
then. Currently, we are nearing the point where traditional computer platforms will no
longer be able to satisfy the constantly increasing demands in computational power posed
by new scientific problems. This, in turn, has motivated us to search for alternative archi-
tectures which could have greater performance potential for scientific computing. Among
them, the most promising one is the massively-threaded architecture of GPUs (Graph-
ics Processing Units) or graphics accelerators. The choice of this target platform is not
surprising since, over the past years, the GPUs have evolved into fully-programmable
general-purpose processors with incredible computational horsepower, and presently of-
fer the best parallel performance per processing unit cost ratio.

Developing algorithms for a new platform is not an easy task to accomplish. It often
requires new insights into seemingly well-studied problems since design decisions that
underlie the original algorithms might not be relevant anymore. For instance, the GPU’s
execution model is exclusively based on data-level parallelism where the same program is
run by a large number (several tens or even hundred thousand) of light-weight threads that
do not possess large private memory spaces (except for a small register set and slow local
memory) and, loosely speaking, cannot execute disjoint code paths without penalties. For
its part, it prompts an algorithm developer to seek for alternative ways to decompose a
problem at hand into a set of primitive operations that can be executed concurrently be-
cause function-level (or coarse-grained) parallel solutions, designed for traditional work-
station networks or multi-core machines, are no longer applicable. Furthermore, unlike
conventional CPUs, graphics processors do not have large cache capacities, which means
that memory access is not as “transparent” as on the modern CPUs. Instead, off-chip
memory latencies are hidden as long as the GPU can keep its functional units busy while
waiting on the results of memory access. As a result, careful management of limited-
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1 Introduction

size on-chip memory together with optimization of external memory access have become
indispensable parts of the GPU algorithm development.

In this thesis, we foremost concentrate on symbolic algorithms dealing with polyno-
mials in one or more variables which, for example, include: polynomial multiplication,
greatest common divisors (GCDs), resultants and subresultants. These algorithms build
up a basic computer algebra tool-box of contemporary mathematical software such as
Maple or Mathematica, and have numerous applications in geometric modeling (Hof89,
Sed83), algebraic geometry (CLO98, BPR06), robotics (SK08, Man92), or computer
graphics (Vin08). The following small motivating example illustrates why symbolic com-
putations can be very expensive. Suppose, we wish to compute an intersection of two
algebraic surfaces of degree 4 defined by the equations:

(10y2 + z2 − 112)2 − 5z4y4 + xy4 − 1 = 0,

50(x2y2 + y2z2 + x2z2) + (x2 + y2 + z2 − 1)2 = 0.

Such sort of computations, for instance, are quite often required in geometric modeling.
The intersection is given by an algebraic curve in 3D whose projection onto the xy-plane
satisfies the equation:

R(x, y) := 1 + 100x2 + 736x2y2 − 202x4 − 46700x4y2 − 89220x2y4 + 100x6 − 42420y6−

936x6y2 + 379384x2y6 + 219186x4y4 − 10x8y4 − 1102310x4y8 + 234160x4y6+

575661x2y8 − 480x6y4 + 4160x6y6 − 100x6y8 − 5300x4y10 − 2374640x2y10+

2600x6y10 + 67650x4y12 + 25x8y8 − 5300y12x2 + 2600y14x2 + 160786y8−

1345660y12 + 25y16 − 100y14 + x8 − 13510xy12 − 2xy4 − 100x3y4 + 1020y10x+

2702x5y4 + 1020x3y8 − 100xy6 + 1852xy8 − 26520y10x3 + 100y2 + 648y4+

361020y10 − 13510x5y8 + 4264x3y6 = 0.

We further proceed by analyzing the “topological structure” of the curve R(x, y). This, in
turn, involves computing the resultant of R and R′y which, in our case, is a dense polyno-
mial of degree 132 and 500-bit coefficients.1 Next, we slightly modify the equations for
the original surfaces (increasing the degree), so that they become:

(10y2 + z2 − 112)2 − 5z5y5 + xy5 − 1 = 0,

50(x2y2 + y2z2 + x2z2) + (x2 + y2 + z2 − 1)3 = 0.

Repeating the same computations, we find that R(x, y) is now a polynomial of total degree
60 with 53-bit coefficients, while the resultant of R and R′y has ultimately become a huge
expression: that is, a dense polynomial of degree 2028 with 4500-bit coefficients! The
above calculations show that symbolic expressions can grow very fast with respect to ini-
tial parameters and, as a result, quickly become unmanageable by a traditional algorithm
tool-box. This was a major source of inspiration for the present work.

The main theoretical contribution of this thesis is the development of matrix algebra-
based algorithms to facilitate the realization of relevant operations with polynomials on
the graphics processor. Using this as a background, we have been able to realize modular

1For basic definitions on polynomials, see Section 2.1.2.
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approaches to expedite polynomial GCD and resultant computations on the GPU. On aver-
age, our implementation gives about 100x speed-up over the analogous CPU-based algo-
rithms. Moreover, a general framework for computations on the GPU, developed within
this thesis, can also be utilized for other computationally-intensive tasks which do not
necessarily originate from computer algebra. This, in particular, holds for various struc-
tured matrix problems arising in many theoretical and applied fields. Additionally, GPU-
optimized modular arithmetic, can be found handy, for instance, in cryptography applica-
tions. The GPU algorithms have been implemented using CUDA framework (CUD10),
and finally integrated in Cgal library.1 To directly profit from the GPU implementation,
we have designed novel algorithms for the solution of a system of bivariate polynomial
equations (BES11), topology computation of algebraic curves (BEKS11a) and curve vi-
sualization (EBS09). Here, the main challenge was to restrict the set of required symbolic
operations to those provided by the GPU while, at the same time, guarantee the correct-
ness of the results. Our benchmarks confirm that, presently, we offer the best solutions,
both in terms of accuracy and the running time, for these fundamental problems; see Sec-
tions 5.1.4 and 5.3.3 for comparison with other state-of-the-art algorithms. Besides, the
detailed complexity analysis shows that our approach for the the solution of a system of
polynomial equations is also the best in terms of the asymptotic complexity known for
this problem so far; see Sections 5.2.1 and 5.2.2.

1.2 Related work
Unlike computer graphics, image processing or simulation, symbolic computing is a rel-
atively new application domain of graphics accelerators and, at the time of writing, only
a few results have been reported in the literature.

In (MP10), an algorithm was proposed to multiplying the polynomials using the FFT
(Fast Fourier Transform) over a finite field on the GPU. The paper discusses a CUDA im-
plementation of Cooley-Tukey and Stockham FFT algorithms which mainly differ in the
specifics of data movements performed between the FFT stages. In this sense, Stockham’s
FFT is more preferable for the GPU realization. Our impression is that the realization of
both FFT variants suffers a lot from the fact that that authors have considered only radix-2
transforms which result in low arithmetic intensity of computations, and have not decom-
posed the problem in a way most suitable for GPU processing. For example, Stockam’s
algorithm is realized in three kernel calls Stockham’s algorithm is realized in three steps
each of which is a sequence of calls to a particular GPU kernel. The first step performs
only matrix transpositions. in the second one the results are scaled by twiddle factors and,
in the last step, a set of primitive radix-2 “butterflies” are computed. As a result, the first
kernel only performs memory operations, while the arithmetic intensity of the others two
is far too low to amortize the cost of expensive memory operations. Instead, it would make
sense to consider the FFTs of higher radices (8 or even 16) to provide reasonable thread
workload and use a hierarchical FFT approach as discussed in Section 4.2.4. As a last re-
mark, the paper only deals with the polynomial multiplication in a prime field, while the
techniques to extend the algorithm for integer polynomials, such as binary segmentation
or Chinese remaindering, are not considered.

1Computational Geometry Algorithms Library, www.cgal.org.
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In his PhD thesis (Pan10, Chapter 6), W. Pan discusses the realization of Brown’s sub-
resultant PRS algorithm (Bro78) on the GPU. Unfortunately, similar to the previous work,
his approach is restricted to a prime field, and therefore cannot be taken as a complete so-
lution. Yet, the undoubted advantage of this algorithm is that it can handle multivariate
polynomials through Kronecker substitution reducing the problem to the bivariate domain
where, afterwards, a usual evaluation-interpolation scheme is employed. The interpola-
tion is realized in terms of finite-field unidimensional FFTs developed in (MP10). The
benefits of using the FFT relate to the fact that both evaluation and interpolation are es-
sentially realized by the same procedure. However, the FFT-based solution induces an
extra processing overhead which may not pay off for small inputs. Furthermore, it re-
quires a very delicate treatment of “unlucky” homomorphisms (see Section 2.3.1 for defi-
nition).To alleviate this problem, W. Pan proposes to use random translations of the inputs,
and provides detailed analysis under which conditions this operation succeeds. The core
of the algorithm is the computation of pseudo-remainders on the GPU, controlled from
the host machine. Again, we find that the main weakness of the algorithm is inadequate
decomposition of the problem into primitive tasks. First, a GPU kernel performs one step
of polynomial pseudo-division realized in just several arithmetic operations making the
overall performance memory-bound. The second drawback of this solution is the need for
too much control from the host side which causes additional global memory traffic and
many kernel calls.

Another interesting work appears in (SS10) which deals with the resultant computa-
tion of bivariate polynomials on the GPU using Collins’ algorithm (Col71). The algo-
rithm realizes modular reduction as well as reconstruction of long integers entirely on
the graphics card which could be of large technical hurdle. To compute univariate resul-
tants, the authors propose to use a division-free PRS algorithm (Polynomial Remainder
Sequences) which, in our opinion, is not a very suitable approach for parallelization. Un-
fortunately, the lack of further details does not allow us to reason about the efficiency
of the implementation. For polynomial interpolation, the authors rely on recurrences to
compute Newton polynomial bases, and then convert the resulting polynomial to mono-
mial bases. From our perspective, this solution is somewhat “over-engineered” because
it involves operations in a polynomial domain while, for comparison, our matrix-based
approach is much easier to realize on the GPU. As reported in the paper, the algorithm
restricts the maximal resultant degree to 512 and the same limit applies to the number of
primes available for computations. The attained speed-up is about 60x over the resultant
algorithm from Mathematica 6. In summary, the overall result makes a good impression
of the focused effort to speed-up symbolic computations on the GPU and brings in some
interesting ideas.

In (Fuj09), an algorithm was proposed to computing a GCD of fixed-length integers
(1024 bits) on the graphics hardware, where the main application domain is a cryptogra-
phy. Despite the fact that, this problem is not directly related to symbolic computations, it
might still be worth an attention because polynomials can be mapped to large integers us-
ing Kronecker substitution (heuristic GCD algorithm). The author adopts a binary GCD
algorithm which is exclusively based on shift-and-add operations, and thus does not use
integer divisions which have no hardware support on the modern GPUs. The algorithm
maps the computation of eight 1024-bit integer GCDs to one CUDA block. The realiza-
tion requires some effort to implement the relevant operations on multi-precision integers

12
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where, seemingly, the main challenge lies in the implementation of parallel integer addi-
tion/subtraction. The author proposes to use a “carry skip method” to limit carry/borrow
propagations. In summary, the paper demonstrates solid GPU programming techniques
and discusses some ideas to improve the performance. The maximal speed-up of 11x over
a CPU-based approach is attained when the number of computed GCDs is on the order
of several thousand.1 Yet, the main shortcoming of the paper is that no attempt has been
made to extend the algorithm to handle larger integers.

From the above overview, we see that there have been several efforts to accelerate
computations with polynomials and large integers on the graphics processor. However,
neither of the above approaches is generic enough to be used in place of a corresponding
CPU-based algorithm: either because only the part of the actual algorithm is realized
on the GPU or the range of the inputs is subject to very strict limitations dictated by the
graphics hardware. Thus, what is really missing, is a complete general approach and a
set of useful subroutines that can be readily utilized to build a symbolic algorithm on the
GPU “from ground up” since, in the long run, all such algorithms have a lot in common.
In the present work, we shall try to achieve this goal.

However, we are not aiming at simply “showcasing” the performance of our approach
on synthetic benchmarks. Thus, the further goal of this work is to develop actual al-
gorithms which can take advantage of the GPU parallel processing. As noted earlier,
we particularly concentrate on two fundamental problems from real algebraic geometry:
namely, the solution of a system of polynomial equations and visualization of algebraic
curves. The related works on these problems will be discussed separately in Sections 5.1.1
and 5.3.1, respectively. Additionally, we give a concise overview of an algorithm for the
topology computation of real algebraic curves which is built on top of the above men-
tioned approach for the solution of systems of polynomial equations, and hence can also
profit from the GPU acceleration. A detailed description and relevant benchmarks for the
latter algorithm can be found in (BEKS11a, BEKS11b).

The rest of this thesis is structured as follows. In Chapter 1, we introduce a detailed
mathematical machinery to deal with symbolic computations in computer environment
and analyze the complexity of modular GCD and resultant algorithms. In Chapter 3 we
present a theory of structured matrices which serves as a basis for efficient computation
with polynomials on the graphics processor. Besides, we show that, with the help of
linear algebra, we can improve upon the parallel complexity of polynomial algorithms
by carefully exploiting data-level parallelism inherent in matrix computations. Chapter 4
begins with the introduction of the GPU architecture and CUDA programming model,
and discusses the main aspects of the realization. In this chapter, we cover many topics
spanning from parallel programming techniques, implementation of modular arithmetic to
the realization of complete algorithms and the ways of exploiting block-level parallelism
on the GPU. Finally, in Chapter 5 we consider two important applications of the developed
algorithms: the solution of systems of polynomial equations and visualization of algebraic
curves. In Chapter 6 we make some concluding remarks and sketch possible directions
for future work.

1Unfortunately, the author did not mention what software was used for comparison.
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2 Background

In this chapter, we establish the basic mathematical framework for symbolic computa-
tions and give an in-depth overview of some fundamental algorithms for polynomials.
Additional information on this topic can be found in many textbooks on algorithms, com-
puter algebra or algebraic geometry; for example, see (GCL92, vzGG03, Coh03, CLO98,
Yap00, Knu97). This chapter has the following outline. We begin with the introduction
of algebraic domains and some useful notation used throughout this thesis. Then, we
turn our discussion to the modular techniques which is one of the most efficient ways
to manipulate symbolic expressions in a computer environment. First, a general homo-
morphism approach will be presented along with the classical algorithms for polynomial
interpolation and Chinese remaindering. Having all necessary prerequisites, we then dis-
cuss the concrete modular algorithms to computing a greatest common divisor (GCD)
and a resultant of two polynomials. The latter algorithms constitute the main theoretical
background of this work. At the end, the model of computation will be given to analyze
the complexity of modular algorithms where we target both sequential and parallel plat-
forms. We compare the derived complexity bounds with those known classical algorithms
that are not based on homomorphism approach. Eventually, we shall see that the modular
techniques is indeed a very powerful tool to speed-up symbolic computations.

2.1 Elementary concepts and computation with polyno-
mials

2.1.1 Integral domains
Let D be an integral domain which is a commutative ring with unity that has no zero
divisors.

Definition 2.1.1. For a, b ∈ D, a is said to be a divisor of b if, for some x ∈ D, it holds
that b = ax. In this case, we write: b | a. •

In an integral domain, divisors of unity are called units. The elements a, b ∈ D are
associates if a | b and b | a. An element of D is called irreducible if its only divisors are
units and associates.

Definition 2.1.2. For a, b ∈ D, a greatest common divisor (GCD) of a and b denoted by
gcd(a, b) is a largest possible c ∈ D, such that c | a and c | b. In other words, any other
common divisor of a and b divides c. •
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We call two elements a, b ∈ D relatively prime if gcd(a, b) = 1. The next definition refines
the notion of an integral domain.

Definition 2.1.3. A Unique Factorization Domain (UFD) is an integral domain D with
an additional property that any non-zero a ∈ D is either unit or can be expressed as a
finite product of irreducible elements: a = p1 p2 · · · pn, and this factorization is unique up
to associates and reordering. •

An important property of a UFD is that, for any two elements a and b which are not zero
at the same time, gcd(a, b) always exists, and it is unique up to associates. Examples of
UFDs are the domain of integers Z whose only units are 1 and −1 as well as an arbitrary
field (such as Q or R) because all non-zero elements of a field are unit. Yet, the algebraic
structure of a UFD alone only states the existence of the GCD but does not provide us
with the way to compute it. For this purpose, we define a special function called valuation
leading to further refinement of an integral domain:

Definition 2.1.4. A Euclidean domain is an integral domain D with valuation ν : D →
N ∪ {−∞} having the following properties. For a, b ∈ D, it holds that:

ν(a) = −∞ if and only if a = 0;
ν(ab) = ν(a) + ν(b) ≥ min(a, b);
if b , 0, there exist elements q, r ∈ D such that a = bq + r,

where either r = 0 or ν(r) < ν(b).

•

In the above definition, q is called a quotient of a divided by b which we denote by
quo(a, b), while r is a remainder or rem(a, b). Then, the classical Euclidean algorithm to
computing a GCD is a consequence of the following theorem:

Theorem 2.1.1: Let D be a Euclidean domain and elements a, b, q, r ∈ D (b , 0) satis-
fying: a = bq + r, with r = 0 or ν(r) < ν(b), then gcd(a, b) = gcd(b, r). See (GCL92,
Theorem 2.3). ♦

Since a field F is by definition a commutative ring, where all non-zero elements are unit,
F is also a Euclidean domain with the trivial valuation ν(a) = 1 for all a ∈ F \ 0. Another
example of a Euclidean domain is a ring of integers Z, where, for a ∈ Z \ 0, the valuation
is defined as ν(a) = |a|. In addition, remark that any Euclidean domain is always a UFD
but the converse is not necessarily true. Some examples will follow in the next section
after we introduce the notion of a polynomial domain.

2.1.2 Polynomials
By D[x] we denote a univariate polynomial domain or the set of univariate polynomials
f (x) in the indeterminate x with coefficients fk in some integral domain D. A non-zero
polynomial is defined as:

f (x) =

n∑
k=0

fkxk, with fn , 0 and fk ∈ D,
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where each non-zero term fkxk is called a monomial of f . The degree deg( f ) of f is the
largest integer n such that fn , 0. An exception is a zero polynomial for which fk = 0 for
all k which is written in standard form as 0, and deg(0) = −∞. For a non-zero polynomial,
fn is called a leading coefficient denoted by lcf( f ), while f0 is a constant term. Given the
smallest integer l for which fl , 0, fl is called a trailing coefficient. A polynomial is
monic if its leading coefficient equals to 1.

By Gauss’ lemma, ifD is a UFD, thenD[x] is also a UFD. Accordingly, the irreducible
elements inD[x] are those which cannot be factored with respect to the coefficient domain
D. As noted earlier, a UFD is not necessarily a Euclidean domain: one example is the ring
of polynomials Z[x]. Indeed, although Z[x] is a UFD, the last property of Definition 2.1.4
does not hold for Z[x]. However, for a field F, F[x] is a Euclidean domain with valuation:
ν( f (x)) = deg( f ). Using Definition 2.1.4, it can be easily verified for f , g ∈ F[x] that:

deg(quo( f , g)) = deg( f ) − deg(g) if deg( f ) ≥ deg(g) and −∞ otherwise,
deg(rem( f , g)) < min(deg( f ), deg(g)).

For a UFD D, a polynomial f ∈ D[x] is said to be square-free if it has no square factors.
In other words, there exist no such g ∈ D[x] that g2 | f . A square-free part f ∗ of f can be
extracted as follows: f ∗ = f / gcd( f , f ′). Indeed, suppose f = h · gk for some k ≥ 2 and g
does not divide h, then by the product rule it holds that:

f ′ = kgk−1kh + gkh′, therefore gcd( f , f ′) = gk−1 and f ∗ = h · g.

Square-free polynomials play an important role in many symbolic algorithms. The next
definition is important to be able to compute the GCD in non-Euclidean domains.

Definition 2.1.5. For a UFD D, the content of a non-zero polynomial f ∈ D[x], denoted
by cont( f ), is defined as a GCD of the coefficients of f . Moreover, f can be written in the
form: f = cont( f ) · pp( f ), where pp( f ) ∈ D[x] is a primitive part of f . •

For convenience, we define cont(0) = 0 and pp(0) = 0. A polynomial f is called prim-
itive if its non-zero coefficients are relatively prime, i.e., cont( f ) = 1. In particular, all
polynomials over a field F are primitive.

Definition 2.1.6. For an integral domainD, let F be the fraction field ofD, in other words,
a smallest field such that D ⊂ F.1 Then, for a polynomial f ∈ D[x] and a fixed a ∈ F we
define the polynomial evaluation map ρa : D[x]→ F as

ρa( f ) = f (a), where f (a) =
∑deg( f )

i=0
fiai. •

Using the evaluation map, we can now define a root of a polynomial as follows. Let F be
an algebraic closure of F. A root α of a polynomial f ∈ F[x] (or f ∈ D[x] where D ⊂ F)
is an element of F such that f (α) = 0. In particular, by the Fundamental Theorem of
Algebra, any polynomial f ∈ D[x] can be expressed as:

f (x) = lcf( f )
∏k

i=1
(x − αi)ei , with αi ∈ F and

∑k

i=1
ei = deg( f ),

1To remove any confusions, by ⊂ we denote a set inclusion not a class inclusion because a field, having
more algebraic structure, can be attributed as a subclass of an integral domain.
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where ei ≥ 1 is called the multiplicity of a root αi.
The above definitions can be naturally extended to a multivariate polynomial domain

denoted by D[x1, . . . , xd] or D[x], where x is a vector of indeterminates x = (x1, . . . , xd)
and d ≥ 1. Let c = (c1, . . . , cd) ∈ Nd be the exponent vector,1 then each element f of D[x]
is a finite sum of the following form:

f (x) =
∑
c∈Nd

fcxc, where fc = f(c1,...,cd) ∈ D, xc = xc1
1 · · · x

cd
d . (2.1)

Using this representation, it is common to say that fc’s are scalar coefficients of f (x) de-
fined over an integral domainD. Similarly, the content of a non-zero polynomial f ∈ D[x]
is the GCD of scalar coefficients of f , and the primitive part of f is defined by analogy
to univariate case. If all fc in the above sum are zero, (2.1) defines a zero polynomial,
denoted by 0. For each monomial fcxc of f , we define the total degree as

∑d
i=1 ci, and

the total degree of f , denoted by deg( f ), is the maximum total degree of its monomials.
To give an example, a bivariate polynomial f ∈ Z[x, y] of total degree 9 can be of the
following form:

f (x, y) = −y7x2 + 2xy5 − (8x3 + 11x2)y3 + (3x5 + 8)y2 − 16x3y + x6 − 1.

A polynomial f ∈ D[x] is called homogeneous if each of its monomials has the same
total degree. The next definition is required if we wish to apply symbolic algorithms to
multivariate polynomials.

Definition 2.1.7. Let u = (u1, . . . , ud) and v = (v1, . . . , vd) be two elements of Nd. Then,
the lexicographical ordering of exponent vectors is defined as follows: u = v if ui = vi

for all i = 1, . . . , d; otherwise let j be the smallest index for which u j , v j, then u < v if
u j < v j, and u > v otherwise. •

Using Definition 2.1.7, we can generalize the notion of leading/trailing coefficients to
polynomials in D[x]. Suppose, the coefficients of f ∈ D[x] are arranged in lexicographi-
cally increasing order of their exponent vectors. Then, the coefficient of the first term (of
the monomial with the maximal total degree) is a leading coefficient, while the coefficient
of the last one is a trailing coefficient.

Definition 2.1.8. For a polynomial f ∈ D[x], by | f |k, where k ∈ N ∪ {∞}, we define the
k-norm on f as a function D[x]→ R:

| f |k =

(∑
c∈Nd
| fc|

k
)1/k

and | f |∞ = max
c∈Nd
| fc|, where f =

∑
c∈Nd

fcxc.
•

In particular, | f |2 is often referred to as a Euclidean norm, while | f |∞ is called the height
of f . We shall use the norms on polynomials later when we talk about modular computa-
tions.

Multivariate polynomials are usually expressed in two ways: using distributive (2.1)
and recursive representations. In the latter case, one indeterminate variable is declared

1Here, Nd denote a Cartesian product of d copies of N.
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Algorithm 2.1 Extended Euclidean algorithm
1: procedure EGCD(a, b ∈ D) . computes c1, c2 ∈ D, s.t., a · c1 + b · c2 = gcd(a, b)
2: c← a, d← b
3: c1 ← 1, d1 ← 0
4: c2 ← 0, d2 ← 1
5: while d , 0 do
6: q← quo(c, d)
7: r← c − q · d, c← d, d← r
8: r1 ← c1 − q · d1, c1 ← d1, d1 ← r1
9: r2 ← c2 − q · d2, c2 ← d2, d2 ← r2

10: od
11: return (c, c1, c2) . returns c := gcd(a, b), c1 and c2
12: end procedure

outermost while the rest are hidden in the coefficient domain. In other words, a polyno-
mial can be considered as an element of D[x2, . . . , xd][x1] since the latter one is naturally
isomorphic to D[x1, x2, . . . , xd]:

f (x1, . . . , xd) =

degx1
( f )∑

i=0

fi(x2, . . . , xd)xi
1, where fi(x2, . . . , xd) ∈ D[x2, . . . , xd]. (2.2)

Similarly, the coefficients fi(. . . ) can be rewritten in the same manner by declaring another
indeterminate variable, for example x2, outermost. Accordingly, degxi

( f ) is the degree of
f considered as univariate polynomial with coefficients in D[x1, . . . , xi−1, xi+1, . . . , xd]. It
is easy to see that degxi

( f ) < deg( f ). For multivariate polynomial domains, if D is a
UFD, then D[x] is also a UFD. However, for a field F, F[x] is a UFD but not a Euclidean
domain if the number of indeterminates is greater than one. To illustrate this, consider
a bivariate polynomial domain Zm[x, y] defined over a finite field Zm. Using recursive
representation, we can treat each element f ∈ Zm[x, y] as a univariate polynomial with
coefficients in Zm[x]. Now, for f written in such a way, we see that the third property in
Definition 2.1.4 is violated because, otherwise, we would be dealing with general rational
functions instead of polynomials. This, in turn, implies that Zm[x, y] is not a Euclidean
domain.

2.1.3 Classical GCD algorithms
We now consider some classical algorithms to computing a GCD. Recall that, if D is a
Euclidean domain, application of Theorem 2.1.1 results in a classical Euclidean scheme
for GCD computations, see (GCL92, Algorithm 2.1). Its further development, known as
Extended Euclidean Algorithm or EGCD, in addition to GCD, also computes such s, t ∈ D
that for any two elements a, b ∈ D it holds that: gcd(a, b) = as + bt. One important
application of EGCD is computing a modular inverse in a finite field. Indeed, suppose a
and b are relatively prime, then as+bt = 1, and hence s is a modular inverse of a modulo b,
see also Section 2.2.2. The pseudocode for EGCD algorithm is given in Algorithm 2.1, see
also (GCL92, Algorithm 2.2), (Knu97, p. 342). Note that the Euclidean algorithm as well
as its extension can be applied equally well to univariate polynomials with coefficients in
a field F since F[x] is a Euclidean domain.
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Algorithm 2.2 Primitive GCD algorithm in a UFD D[x]
1: procedure PGCD(f, g ∈ D[x]) . computes gcd(f, g) ∈ D[x]
2: if f = 0 then return g . handle special cases
3: elif g = 0 then return f fi
4: a← pp(f), b← pp(g)
5: if deg(a) < deg(b) then swap(a, b) fi . ensure that deg(a) ≥ deg(b)
6: while b , 0 do
7: r← prem(a, b)
8: a← b, b← pp(r) . extract primitive part of the pseudo-remainder
9: od

10: a← a · gcd(cont(a), cont(b)) . multiply by a content gcd in the coefficient domain
11: return (a)
12: end procedure

Naturally, we aim to extend the above algorithms to polynomials with coefficients
over a UFD which would also enable us to compute a GCD in multivariate domains. In
a UFD, it is usually impossible to carry out the division process (unless the divisor is
monic), and hence the Euclidean algorithm does not work. Instead, we can rely on the
process of pseudo-division formalized in the following definition:

Definition 2.1.9. Given a polynomial domainD[x] over a UFDD, then for all f , g ∈ D[x]
with g , 0 and deg( f ) ≥ deg(g), there exist polynomials q, r ∈ D[x] satisfying:

lcf(g)δ+1 f = g · q + r, where deg(r) < deg(g), δ = deg( f ) − deg(g).

The polynomials r and g are called pseudo-quotient and pseudo-remainder denoted by
pquo( f , g) and prem( f , g), respectively. •

The next theorem is the basis for GCD computations in non-Euclidean domains:

Theorem 2.1.2: Let D[x] be a polynomial domain over a UFD D. Then, for f , g ∈ D[x]
with g , 0 and deg( f ) ≥ deg(g), it follows that: gcd( f , g) = gcd(g, pp(r)), where r =

prem( f , g) and pp(r) is a primitive part of r. See (GCL92, Theorem 2.10). ♦

The above theorem leads us to Algorithm 2.2, known as primitive GCD algorithm, which
works over a UFD D. Important is the fact that this algorithm can be applied equally well
to multivariate polynomials (defined over some UFD). Unfortunately, one of its main
drawbacks is the need for computing a primitive part in each step (line 8) which progres-
sively becomes harder as the coefficients of ‘a’ grow. In fact, there is a common problem
shared by all symbolic algorithms, known as expression swell, where the intermediate re-
sults of computations tend to grow exponentially in size while the final result is relatively
small. Besides, performing the arithmetic operations in a polynomial domain is ineffi-
cient in the computer environment since these operations are not natively supported on a
computer platform. The tools introduced in the next section are supposed to overcome
these difficulties.

2.2 Modular techniques
The modular or homomorphism approach is a traditional way to avoid computational
problems associated with symbolic algorithms. Although, in most general form, it can

20



2.2 Modular techniques

be formulated for polynomials in D[x1, . . . , xd] for some integral domain D, we focus our
attention on a special case where polynomials are defined over the domain of integers Z
since, in most situations, one can reduce a problem at hand to an equivalent problem in
Z[x1, . . . , xd]. A modular approach originates in the works of Collins (Col71), which
investigates in computing resultants of multivariate polynomials, and Brown (Bro71,
Bro78) dealing with multivariate GCD computations and subresultants.

In vague terms, this method decomposes a problem stated in one algebraic domain
into a set of similar problems over a (much simpler) domain. For instance, performing
computations in a finite field Zm for a small prime m is a lot more efficient than working
with arbitrary large integers in Z because multi-precision arithmetic is not natively sup-
ported by the computer hardware. In contrast, elements of Zm can be operated upon as
single-precision integers if the prime m fits in a machine word. In addition, with finite
field arithmetic we can prevent the coefficient growth of intermediate results.

Certainly, we must concern ourselves with how to recover a solution in the original
domain given the set of “homomorphic images”. This is a task of Chinese remaindering
and interpolation algorithms which we discuss in this section in detail.

2.2.1 Homomorphisms
We begin with the definition of a ring morphism, that is a function between two rings
which preserves the operations of addition and multiplication.

Definition 2.2.1. Let R and R′ be two rings. A mapping φ : R → R′ is called a ring
morphism if

φ(a + b) = φ(a) + φ(b) for all a, b ∈ R,
φ(ab) = φ(a) · φ(b) for all a, b ∈ R,
φ(1) = 1.

•

When the defining function is surjective (i.e. onto), φ : R → R′ is called an epimor-
phism. Such type of morphisms is especially interesting since it allows us to reconstruct
the preimage of an operation under certain conditions. Throughout the discussion, we
shall agree to use the term homomorphism identifying it with epimorphism which is a
common practice in mathematical literature.1 Adopting this terminology, R′ is then called
a homomorphic image of R.

The two types of homomorphisms introduced below are of primary importance for
efficient symbolic computations. For polynomials defined over the ring of integers Z, a
modular homomorphism is a map:

φm : Z[x1, . . . , xd]→ Zm[x1, . . . , xd],

where m ∈ Z is a fixed integer, usually chosen to be a prime number. In other words, a
modular homomorphism is an operation where all scalar coefficients of f ∈ Z[x1, . . . , xd]
are reduced modulo m. For example, given a polynomial in Z[x, y]:

f (x, y) = y4 − 11y3 + 212x2y2 − 3x2y − x4,

1To be precise, a homomorphism is simply a synonym for the term morphism, however it is often used
referring particularly to surjective morphism or epimorphism.
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then the result of applying modular homomorphism for m = 7 is:

φ7( f (x, y)) = y4 + 3y3 + 5x2y2 + 4x2y + 6x4.

Another type of homomorphism needed for the efficient computations with multivariate
polynomials is an evaluation homomorphism:

φxi−α : D[x1, . . . , xd]→ D[x1, . . . , xi−1, xi+1, . . . , xd],

where α ∈ D for some integral domain D. In fact, the effect of φxi−α is nothing but
evaluating f at a fixed element α ∈ D which is often called an evaluation point:

φxi−α( f (x1, . . . , xd)) = f (x1, . . . , xi−1, α, xi+1, . . . , xd).

Formally speaking, evaluation homomorphism can be regarded as computing a residue of
f ∈ D[x1, . . . , xd] “modulo (xi −α) ∈ D[xi]” which also explains the notation. To see this,
let f be an element of D′[xi] with coefficients in D′ = D[x1, . . . , xi−1, xi+1, . . . , xd]. Then,
we can write the following identity:

f (xi) − f (α) + f (α) =
∑

j>0
f j(x j

i − α
j) + f (α) ≡ f (α) mod (xi − α),

since xi − α divides x j
i − α

j for j > 0. Together, the composition of modular and evalua-
tion homomorphisms is a very powerful technique to facilitate symbolic operations. Yet,
before developing the actual algorithms, we need to study how to “lift” the results back
to the original domain after performing the computations on homomorphic images. This
is the next step in our discussion.

2.2.2 Chinese remaindering
Since we identify a homomorphism with a surjective mapping, it is necessary to have
several (different) homomorphic images to be able to uniquely reconstruct the result in
the original domain. The idea of “inverting” modular homomorphisms is formalized in
the theorem below. In what follows, we will adopt the standard notation that for any
a, b,m ∈ Z, a ≡ b (modm) is equivalent to writing a = b + r · m for some r ∈ Z.

Theorem 2.2.1 (Chinese Remainder Theorem for integers): Let m1,m2, . . . ,mk ∈ Z be
pairwise relatively prime integers, that is, gcd(mi,m j) = 1 for i , j, and let ri ∈ Zmi be the
set of corresponding residues (1 ≤ i ≤ k). Then, there exists a unique r ∈ Z such that any
integral solution a ∈ Z of the following congruence system:

a ≡ ri (mod mi) (1 ≤ i ≤ k),

satisfies a ≡ r (mod M), where M =
∏k

i=1 mi and 0 ≤ r < M. ♦

The proof can be found in many sources: for instance, see (GCL92, Section 5.6), (Yap00,
Lecture IV). In the above theorem, the set of residues (r1, . . . , rk) is often referred to as
RNS (Residue Number System) representation of an integer r, while the product M is
called a dynamic range of RNS defined by the moduli set (m1, . . . ,mk).
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Algorithm 2.3 Incremental Chinese remainder algorithm (CRA)
1: procedure cra_incremental({r1, . . . , rk}, {m1, . . . ,mk}) . set of moduli mi ∈ Z and residues: ri ∈ Zmi

2: M← m1, r← r1 . initially dynamic range is a single modulus
3: for i = 2 to k do . iterate over all residues
4: c← M−1 mod mi
5: r′ ← r mod mi, s← (ri − r′)c mod mi
6: r← r + s ·M, M← M ·mi . add next residue to the result
7: od
8: return r . return r satisfying 0 ≤ r < M
9: end procedure

Let us denote si = M/mi =
∏k

j=1, j,i m j, and s∗i = s−1
i mod mi, where s−1

i is a modular
inverse of si modulo mi. As noted in Section 2.1.3, the modular inverse can be computed
using the Extended Euclidean algorithm (see Algorithm 2.1 in Section 2.1.3). Thus, it
can be immediately verified that a unique r ∈ Z satisfying the congruence relations of
Theorem 2.2.1 is:

r =

(∑k

i=1
si(ris∗i mod mi)

)
mod M. (2.3)

The above formula can readily be used to recover the integer r. However, we would like
to avoid computing a residue modulo M since M is usually a large number. The first solu-
tion to this problem is to apply the Chinese remaindering algorithm (CRA) incrementally,
that is to add one residue at a time to the final product, as outlined by Algorithm 2.3. In
practical applications, the moduli set is usually fixed, hence it is wise to precompute the
numbers m−1

1 mod m2, (m1m2)−1 mod m3, etc., so that computing the modular inverse in
line 4 of the algorithm can be avoided. A major strength of Algorithm 2.3 lies in the fact
that we can monitor the progress by gradually expanding the dynamic range of RNS, and
stop as soon as a result satisfies some predefined criterion. This serves as a basis for prob-
abilistic modular algorithms, see (dKMW05, Mon05). On the other hand, Algorithm 2.3
extensively uses manipulations with large integers (lines 5–6) and is not suited for parallel
implementation. Directly applying the formula (2.3), we can also develop a “divide-and-
conquer” Chinese remainder algorithm. However, the latter algorithm requires a signifi-
cant amount of precomputation work to be efficient, see (vzGG03, Alg. 10.22).

The next approach, called Mixed Radix Conversion (MRC), partially solves the above
mentioned problems by gently decoupling the arithmetic operations in a field Zm from
the operations in Z. In addition, the computations are arranged in a neatly structured way
allowing for a parallel processing. The idea is to associate the “search-for” integer r with
a set of Mixed-radix (MR) digits {γi} as follows:

r = γ1M1 + γ2M2 + · · · + γkMk,

where M1 = 1, Mi = m1m2 . . .mi−1 (i = 2, . . . , k). The mixed-radix digits can be computed
using the algorithm (Yas91) in the following way (i = 1, . . . ,N):

γ1 = r1, γ2 = (r2 − γ1)c2 mod m2,
γ3 = ((r3 − γ1)c3 − (γ2M2c3 mod m3)) mod m3, . . .
γi = ((ri − γ1)ci − (γ2M2ci mod mi) − . . .

−(γi−1Mi−1ci mod mi)) mod mi. (2.4)
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Algorithm 2.4 Mixed Radix Conversion
1: procedure mrc_algorithm({r1, . . . , rk}, {m1, . . . ,mk}) . set of moduli mi ∈ Z and residues: ri ∈ Zmi

2: γ1 ← r1 . initialize the first MR digit
3: for i = 2 to k do
4: γi ← (ri − γ1)ci mod mi . ci’s should be precomputed
5: Mi ← m1ci mod mi
6: od
7: for i = 2 to k − 1 do . in iteration i, the digits (γ1, . . . , γi) are already computed
8: for j = i + 1 to k do . update the MR digits (γi+1, . . . , γk) using γi
9: γj ← (γj − γiMj) mod mj

10: Mj ← Mjmi mod mj . add the next modulus to each Mj
11: od
12: od
13: return (γ1, . . . , γk) . return a set of MR digits: γi ∈ Zmi

14: end procedure

where ci = (m1m2 . . .mi−1)−1 mod mi. One can see that it is possible to extract some data-
level parallelism from these computations. We shall exploit this fact later when we discuss
the realization of Chinese remaindering on the graphics hardware, see Section 4.3.4. The
serial algorithm to computing MR digits is given in Algorithm 2.4. Here, we assume that
ci’s can be precomputed in advance, while the Mi’s are computed iteratively. Observe
that all the arithmetic operations are restricted to a finite field which is a main advantage
of this algorithm. Having the set of MR digits computed, the associated integer r can be
recovered by simply evaluating Horner’s scheme on the digits:

r = γ1 + m1(γ2 + m2(γ3 + m3(. . . ))).

2.2.3 Polynomial interpolation
We next consider the analogous process of inverting an evaluation homomorphism which
is known as polynomial interpolation. For our purposes, it shall suffice to consider only
a univariate interpolation problem where one homomorphism φxi−α is inverted at a time,
e.g.:

D[x3]
φ−1

x2−α
−−−−→ D[x2, x3]

φ−1
x1−α
−−−−→ D[x1, x2, x3].

Remark, however, that it is possible to compose several inversions together: this idea is
exploited in sparse multivariate interpolation algorithms, see (BO88, ZV02). In fact, poly-
nomial interpolation has a lot in common with the integer Chinese remaindering, if we
recall that a homomorphism φxi−α is equivalent to computing the residue of a polynomial
modulo (xi − α). It can be seen as a special case of the following theorem.

Theorem 2.2.2 (Chinese Remainder Theorem for polynomials): Let f1, . . . , fk ∈ F[x]
be pairwise relatively prime polynomials with coefficients in a field F, and g1, . . . , gk ∈

F[x] be arbitrary polynomials. Then, there exists a unique g ∈ F[x] such that any solution
a ∈ F[x] of the following system of congruences:

a ≡ gi (mod fi) (1 ≤ i ≤ k),

satisfies a ≡ g ( mod F) with F =
∏k

i=1 fi and deg(g) < deg(F). See (Sho09, Thm 16.19).♦
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Algorithm 2.5 Newton interpolation algorithm
1: procedure newton_interp({α0, . . . , αn}, {y0, . . . , yn}) . set of distinct points αi ∈ D and values yi ∈ D
2: for i = 0 to n do
3: f[i,i] = yi . initialization
4: od
5: for p = 1 to n do . compute Newton coefficients
6: for i = 0 to n − p do
7: f[i,i+p] =

(
f[i,i+p−1] − f[i+1,i+p]

)
/(αi − αi+p)

8: od
9: od

10: f ← f[0,n] . reconstruct the interpolating polynomial
11: for i = n − 1 to 0 by −1 do
12: f ← f · (x − αi) + f[0,i]
13: od
14: return f . polynomial f ∈ Quo(D)[x], such that f(αi) = yi
15: end procedure

Precisely, interpolation can be defined as follows: given n+1 evaluation points α0, . . . , αn ∈

D and corresponding values y0, . . . , yn ∈ D, find a polynomial f ∈ D[x] of degree at most
n, such that:

f (αi) = yi for 0 ≤ i ≤ n.

This, in turn, leads to a linear system with n + 1 equations and n + 1 unknowns:

Va = y, with Vi j = α
j
i for i, j = 0, . . . , n,

where a is a vector of polynomial coefficients and V is a Vandermonde matrix. Because
the determinant of the Vandermonde matrix equals to: det V =

∏
0≤i< j≤n(α j−αi), it follows

that the interpolation problem has a solution if the elements {αi} are pairwise distinct.
We now discuss the Newton interpolation algorithm which expresses the interpolating

polynomial f in terms of divided differences (similar to mixed-radix representation):

f (x) = f[0,0](0) + f[0,1](x − α0) + · · · + f[0,n]

∏n−1

i=0
(x − αi),

where f[i, j] ∈ Quo(D) are Newton coefficients or divided differences, and Quo(D) de-
fines a quotient field of an integral domain D. The divided differences can be recursively
computed as follows (Knu97):

f[i,i+p] =
(

f[i,i+p−1] − f[i+1,i+p]

)
/(αi − αi+p), and f[i,i] = yi.

Using these recursions, one can compute the terms f[i, j] in a “triangle” fashion: that is,
start from f[0,0], f[1,1], f[2,2], etc., then compute f[0,1], f[1,2], f[2,3] and so on, until f[0,n]. The
pseudocode for polynomial interpolation is outlined in Algorithm 2.5. The algorithm ad-
mits further optimizations: for example, we can rearrange the computations in such a way
to reduce the number of divisions which is frequently used for interpolation in a finite
field. A possible weakness of this method is that it relies on operations in a polynomial
domain (line 12) to reconstruct the final result which is not always desirable. By analogy
to the integer CRA, we can also process the evaluation points incrementally. Yet, this
is not always efficient in practice as one needs to deal with inverses modulo a polyno-
mial which are expensive to precompute because interpolation usually precedes integer
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Figure 2.1: Homomorphism diagram for the solution of a symbolic problem

Chinese remaindering. A “divide-and-conquer” version of the polynomial interpolation
algorithm can be found in (vzGG03, Alg. 10.11).

Another alternative to Newton method is to directly solve the Vandermonde system.
In that case, we would immediately obtain the coefficients of f without the need for poly-
nomial arithmetic. In fact, as we see in Section 3.2.2, this idea leads to a rather efficient
algorithm operating in Zm, provided that we can exploit the structure of the Vandermonde
matrix.

2.2.4 Homomorphism diagram

Having discussed the main steps of the modular approach, it is illustrative to visualize
a whole “solution route” using a diagram in Figure 2.1. Given a multivariate domain
Z[x1, . . . , xd], we first apply a modular homomorphism for a set of moduli mi project-
ing the original domain to Zmi[x1, . . . , xd] for i = 1, . . . , n. The actual number of moduli
we need depends on a concrete problem at hand, it will be clarified later how to esti-
mate it. Next, a sequence of evaluation homomorphisms is applied recursively further
projecting Zmi[x1, . . . , xd] onto Zmi[x1]. The latter one is a Euclidean domain since Zmi is
a field. Clearly, the operations in Zmi[x1] can be performed efficiently by the computer.
Once the problem is solved over Zmi[x1], we take the way back by lifting a solution first
to Zmi[x1, . . . , xd] and eventually to Z[x1, . . . , xd] by applying polynomial interpolation
and Chinese remaindering, respectively. Although, it might seem that we have taken a
very long “path” to the solution, a homomorphism approach can substantially reduce the
computational cost in many cases as we shall see in short.

However, the things are not as transparent with the homomorphism approach as they
look like: there are important issues that we have not addressed yet. For example, it is not
always easy to find the right number of homomorphic images while theoretical bounds
could be quite pessimistic (if known at all) rendering the whole algorithm inefficient. An-
other problem relates to detecting the so-called “unlucky” homomorphisms which occur
when the input polynomials (partially) lie in the kernel of a homomorphism transforma-
tion we have applied. Using such homomorphisms to recover a final solution can lead to
incorrect results. These and related problems will be discussed in the following sections.
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2.3 Modular GCD computations

2.3 Modular GCD computations
We begin our study of modular algorithms with the GCD computation of two polyno-
mials. The GCD has a fundamental importance in algebraic manipulation and appears
as a subproblem of many sophisticated symbolic algorithms: for instance, to compute a
square-free factorization of a polynomial,1 for comparison of algebraic numbers or solv-
ing systems of non-linear (polynomial) equations.

2.3.1 Setting
Observe that, we are interested in a GCD algorithm which operates in some UFD D to
ensure that this solution is applicable both for univariate and multivariate polynomial do-
mains. We start with some theoretical considerations which form the basis for a modular
GCD algorithm. To simplify the notation, we state the results for univariate polynomi-
als with coefficients in a UFD D. It should be noted that these results extend naturally
to multivariate polynomials in D[x] if we impose a lexicographical order of polynomial
terms. However, observe that multivariate polynomials shall not be viewed in recursive
representation. The following theorem provides the necessary conditions to computing a
GCD using homomorphism approach:

Theorem 2.3.1: For UFDs D and D′, let φ : D → D′ be a homomorphism of rings.
This also induces a natural homomorphism from D[x] to D′[x]. Suppose f , g ∈ D[x] and
h = gcd( f , g) with φ(lcf(h)) , 0. Then, it holds that:

deg(gcd(φ( f ), φ(g))) ≥ deg(gcd( f , g)). ♦

Proof Since h is a GCD, f and g can be written as: f = p · h and g = q · h for some
p, q ∈ D[x]. By definition, a ring morphism preserves multiplication, thus we have:

φ( f ) = φ(p) · φ(h), and φ(g) = φ(q) · φ(h),

which implies that φ(h) is a common factor of both φ( f ) and φ(g). As a result, φ(h) must
divide a GCD of homomorphic images. Finally, since φ(lcf(h)) , 0, we conclude that:

deg(gcd(φ( f ), φ(g))) ≥ deg(φ(h)) := deg(gcd( f , g)).

The condition φ(lcf(h)) , 0 can be verified by checking that the homomorphic im-
ages of f and g do not decrease in degree. In Theorem 2.3.1, those φ’s for which
deg(gcd(φ( f ), φ(g))) > deg(φ(h)) are often referred to as unlucky homomorphisms. Ap-
parently, such homomorphisms cannot be used to recover a GCD of the original polyno-
mials. Yet, one can show that for specific f , g ∈ D[x], there is only a finite number of
unlucky homomorphisms. For the time being, we assume that we can somehow identify
and discard homomorphisms of this type. We return to this issue after presenting the
overall approach. The modular algorithm (Bro71) relies on the fact that:

φ(gcd( f , g)) = c · gcd(φ( f ), φ(g)), where φ : D→ D′ and c ∈ D′,

1For definition of a square-free polynomial, see Section 2.1.2.
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provided that the condition of Theorem 2.3.1 is satisfied and φ is not an unlucky homo-
morphism. Here, the constant c is not a problem because we can extract the primitive parts
f̃ and g̃ of f and g, compute a GCD h̃ of respective homomorphic images, and normalize
the result to ensure that:

lcf(h̃) = φ(gcd(lcf( f ), lcf(g))) with h̃ = gcd(φ( f̃ ), φ(g̃)).

This can be easily achieved as we know that lcf(h) | gcd(lcf( f ), lcf(g)), where h =

gcd( f , g). Repeating this process for a number of homomorphic images, and then com-
bining them together yields a polynomial whose primitive part is precisely gcd( f̃ , g̃), and
the rest is obvious.

2.3.2 The algorithm

In what follows, we further restrict ourselves by assuming that polynomials are defined
over the domain of integers Z since, as noted in Section 2.2, most practical problems, in
the long run, can be reduced to computations with integer polynomials. For polynomials
f , g ∈ Z[x1, . . . , xd], the modular GCD algorithm proceeds with the following steps:

(a) calculate the number of homomorphisms required;
(b) find a homomorphism φ with deg(φ( f )) = deg( f ) and deg(φ(g)) = deg(g); this is

equivalent to: lcf( f ), lcf(g) < ker φ;
(c) compute gcd(φ( f ), φ(g)) using the image algorithm;
(d) if the chosen homomorphism is not unlucky, add the image to the final result; other-

wise, go back to step (b);
(e) terminate the algorithm if the number of images suffices to reconstruct the result;

otherwise, go back to step (b).

If the algorithm is applied to univariate polynomials (that is, d = 1), it suffices to use only
a modular homomorphism φm : Z→ Zm for sufficiently many primes m. For multivariate
polynomials, we again start with a modular homomorphism, and then, in step (c), invoke
the algorithm recursively using the set of evaluation homomorphisms until the problem is
reduced to GCD computations in Zm[x]. In the latter case, we can either use the Euclidean
scheme since Zm[x] is a Euclidean domain or we can adapt the primitive GCD algorithm
for reasons of efficiency. We will discuss this in Section 2.3.3 in greater detail.

We next turn to the question of how to choose the right number of homomorphic
images. In case of modular homomorphisms, it depends on the size of the scalar coef-
ficients of a GCD. For that, one can use the bounds on polynomial divisors because for
h = gcd( f , g), it holds that h | f and h | g. In essence, obtaining such bounds is a large
topic on its own, and not much is known in the multivariate case. Here, we give only basic
estimates and postpone the further discussion to Section 4.5, where we discuss the real-
ization of a univariate GCD algorithm on the GPU. The following result is due to (Mig74)
which was generalized to multivariate domains in (HS06, Cor04). For non-zero polyno-
mials f , h ∈ Z[x1, . . . , xd] of maximal degree n in each variable separately, with h | f , we
have

|h|∞ ≤ 2(n+1)d+1| f |2.
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Naturally, since gcd( f , g) is the divisor of both f and g, we can apply the bound separately
to both polynomials and pick up the minimal one. Still, this estimate is usually quite
pessimistic unless we do some preprocessing of input polynomials. This is why, one
usually invokes the algorithm incrementally. In other words, we keep on adding new
images to the result h ∈ Z[x] until the latter one does not change anymore from one
image to the next. In all likelihood, this should happen as soon as h satisfies the following
a-priory bound (GCL92, p.308):

|h|∞ ≤ 2min(deg( f ),deg(g)) min(| f |∞, |g|∞)| gcd(lcf( f ), lcf(g))|.

When the above inequality holds, we finally check if h | f and h | g indicating that a GCD
is computed. In the literature, this test is often referred to as trial division. It works very
well in practice because it makes the algorithm output-sensitive. For evaluation homo-
morphisms, the number of images required depends on the degree of a GCD polynomial
in each variable separately. These can be trivially estimated as:

degxi
(h) ≤ min(degxi

( f ), degxi
(g)), for i = 1, . . . , d

since a GCD must divide both polynomials irrespective of which xi is chosen to be the
outermost variable in the polynomial representation.

Now, it remains to take care of unfinished business with unlucky homomorphisms. In
the original work (Bro71), it is argued that, for any input polynomials there are finitely
many primes and evaluation points that induce unlucky homomorphisms, see also (Yap00,
§ 4). Furthermore, Brown shows that, for f , g ∈ Z[x1, . . . , xd], the probability of a prime
m being unlucky is bounded by d/m, see (Bro71, Section 4.4). Likewise, the probability
that an evaluation point for the outermost variable xd chosen at random from the elements
of Zm is unlucky is at most u/m, where

u ≤
d−1

max
i=1

(degxi
( f ) + degxi

(g)) ·max(degxd
( f ), degxd

(g)) · (d − 1),

see (Bro71, Section 4.6). For realization, one usually selects the primes that fit in a
single machine word on the target architecture. Therefore, in practice, the probability of
encountering an unlucky prime is always negligibly small. Simple calculations show that
the same also holds for evaluation points. Assuming that unlucky homomorphisms occur
rarely on the average, we can use the degree anomaly check based on Theorem 2.3.1
to identify them. More precisely, investigations in (Bro71) show that it suffices to keep
those homomorphic images for which deg(gcd(φ( f ), φ(g))) is minimal and discard the
remaining ones.

Example 2.3.1. To illustrate how this works, let us consider the GCD computation for
polynomials

f = − y4 + (140x + 2)y3 − (4900x2 + 139x)y2 − (140x3 + 142x + 2)y +

4900x3 + 5040x2 + 141x + 1, and

g = − 2y3 + (210x + 3)y2 − (4900x3 + 139x)y − 70x2 − 71x − 1.

At the beginning, we choose the following three primes: 7, 11 and 13 to work with.
The prime set can be enlarged later if needed. Since gcd( f , g) := h must divide both

29



2 Background

Algorithm 2.6 Modular GCD algorithm with trial division: part I
1: procedure gcd_int(f, g ∈ Z[x1, . . . , xd]) . computes gcd(f, g) ∈ Z[x1, . . . , xd]
2: a← cont(f), b← cont(g), F← f/a, G← g/b . normalize input polynomials
3: c← gcd(a, b), q← gcd(lcf(F), lcf(G))
4: k← min(degxd

(F), degxd
(G)), (M,H)← (0, 0)

5: µ← 2k · |q| ·min(|f|∞, |g|∞) . compute “intuitive” bound on the size of GCD coefficients
6: while true do
7: m← next_prime() . choose a prime that does not divide q
8: while (m | q) m← next_prime() od
9: F̃← φm(F), G̃← φm(G) . compute homomorphic images modulo m

10: q̃← φm(q), H̃← gcd_mod(F̃, G̃,m), l← degxd
(H̃) . compute a GCD in Zm[x1, . . . , xd]

11: H̃← q̃ · lcf(H̃)−1 · H̃ . normalize the result by forcing lcf(H̃) = q̃
12: if (l < k) then . tests for unlucky homomorphisms
13: (M,H)← (m, H̃), k← l . degree check fails: discard previous results
14: elif (l = k) then
15: for all scalar coefficients He ∈ Z of H do . otherwise, add the image H̃ to the result H
16: He ← cra_incremental({He, H̃e}, {M,m})
17: M← M ·m
18: fi
19: if (M > µ) then . perform division check as soon as GCD coefficients are large enough
20: Q← pp(H)
21: if (Q | F) and (Q | G) then
22: return (c · Q) . add the GCD of contents to the result
23: fi
24: fi
25: od
26: end procedure

polynomials, we know that degx(h) ≤ 3 and degy(h) ≤ 3. Thus, it suffices to use 4
evaluation points to substitute the variable x in the original polynomials. To calculate the
GCD in Z7[x, y], we take the polynomials:

f7(x, y) = −y4 + 2y3 + xy2 − (2x + 2)y + x + 1, g7(x, y) = −2y3 + 3y2 + xy − x − 1,

where a GCD of the leading coefficients is q7 := gcd(lcf( f7), lcf(g7)) = −1. We shall
account for this later. Evaluating these polynomials at x = {1, 2, 3, 4} and computing the
GCDs in Z7[y], yields:

gcd( f7(1, y), g7(1, y)) = gcd(−y4 + 2y3 + y2 + 3y + 2,−2y3 + 3y2 + y − 2) = y − 1,

gcd( f7(2, y), g7(2, y)) = gcd(−y4 + 2y3 + 2y2 + y + 3,−2y3 + 3y2 + 2y − 3) = y − 1,

gcd( f7(3, y), g7(3, y)) = gcd(−y4 + 2y3 + 3y2 − y − 3,−2y3 + 3y2 + 3y + 3) = y − 1,

gcd( f7(4, y), g7(4, y)) = gcd(−y4 + 2y3 − 3y2 − 3y − 2,−2y3 + 3y2 − 3y + 2) = y − 1.

Clearly, the result does not depend on x for m = 7, hence interpolation gives us the first
image of a GCD in Z7[x, y]: h7(x, y) = q7 · (y − 1) = −y + 1. Repeating the calculations
for m = 11, we have:

f11(x, y) = − y4 − (3x − 2)y3 − (5x2 − 4x)y2 + (3x2 + x − 2)y + 5x3 + 2x2 − 2x + 1,

g11(x, y) = − 2y3 + (x + 3)y2 − (5x2 − 4x)y − 4x2 − 5x − 1,
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Algorithm 2.7 Modular GCD algorithm with trial division: part II
1: procedure gcd_mod(f, g ∈ Zm[x1, . . . , xd],m ∈ Z) . computes gcd(f, g) ∈ Zm[x1, . . . , xd]
2: if (d = 1) then . proceed with univariate GCDs
3: return gcd_univariate(f, g,m)
4: fi . consider f, g as polynomials in Zm[x1, . . . , xd−1] with coeffs. in Zm[xd]:
5: let (f̃, g̃)← (f, g) where f̃, g̃ ∈ Zm[x1, . . . , xd−1][xd]
6: a← cont(f̃), b← cont(g̃), F← f/a, G← g/b . divide out the contents a, b ∈ Zm[xd]
7: c← gcd_univariate(a, b,m), q← gcd_univariate(lcf(F), lcf(G),m) . here c, q ∈ Zm[xd]
8: k← min(degxd

(F), degxd
(G)), (S, n)← ({∅}, 0), δ← k + deg(q)

9: while true do
10: α← next_point(m) . choose an evaluation point α ∈ Zm such that q(α) , 0
11: while (q(α) = 0) α← next_point(m) od
12: F̃← φxd−α(F), G̃← φxd−α(G) . compute homomorphic images modulo xd − α
13: q̃← q(α), H̃← gcd_mod(F̃, G̃,m), l← degxd−1

(H̃) . invoke the algorithm recursively
14: H̃← q̃ · lcf(H̃)−1 · H̃ . normalize the result so that lcf(H̃) = q̃
15: if (l < k) then . test for unlucky homomorphisms
16: S← {(α, H̃)}, (k, n)← (l, 1) . degree check fails: discard previous results
17: elif (l = k) then
18: S← S ∪ {(α, H̃)}, n← n + 1 . update S to include the next evaluation point
19: fi
20: if (n = δ) then . interpolate as soon as we reach the degree bound
21: H← newton_interp(S) . reconstruct polynomial
22: Q← pp(H) . here H is a multivariate polynomial with coeffs. in Zm[xd]
23: if (Q | F) and (Q | G) then
24: return (c · Q) . multiply by the GCD of the contents
25: fi
26: fi
27: od
28: end procedure

with q11 = gcd(lcf( f11), lcf(g11)) = −1. Again, we proceed by computing the series of
GCDs in Z11[y]:

gcd( f11(1, y), g11(1, y)) = gcd(−y4 − y3 − y2 + 2y − 5,−2y3 + 4y2 − y + 1) = y − 5,

gcd( f11(2, y), g11(2, y)) = gcd(−y4 − 4y3 − y2 + y + 1,−2y3 + 5y2 − y − 5) = y + 2,

gcd( f11(3, y), g11(3, y)) = gcd(−y4 + 4y3 − 5y + 5,−2y3 − 5y2 + 3) = y − 2,

gcd( f11(4, y), g11(4, y)) = gcd(−y4 + y3 + 2y2 − 5y + 4,−2y3 − 4y2 + 2y + 3) = y + 5.

Interpolating the individual coefficients modulo m = 11, one obtains: h11(x, y) = q11(y −
4x − 1) = −y + 4x + 1. Note that, h7 and h11 both have the same degree in the variable
y, thus we can argue that either none or both primes yield unlucky homomorphisms at
this step. We further apply coefficient-wise Chinese remaindering giving a polynomial:
h77(x, y) = −y − 7x + 1. Next, the computations modulo m = 13 produce the following
result: h13 = −y + 5x + 1 which has the same degree in the variable y as previously
computed h7 and h11. By combining h13 with h77, one obtains: h̃(x, y) = −y + 70x + 1.
Finally, by performing the division check, we verify that h̃(x, y) is indeed a GCD. ♣

The first part of the modular GCD algorithm, gcd_int dealing with modular homomor-
phisms, is outlined in Algorithm 2.6. For each homomorphic image, gcd_int invokes the
algorithm gcd_mod (see Algorithm 2.7) which, in its turn, recursively reduces the GCD
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computation to the univariate case (gcd_univariate). Both algorithms essentially follow
the same lines of code with only few differences. Namely, in Algorithm 2.7 we invoke
gcd_mod recursively. In addition, the interpolation points are not processed incrementally
for reasons explained in Section 2.2.3. This also helps us to avoid the explicit construction
of many intermediate polynomials which is undesirable. Instead, we collect the evalua-
tion points and perform interpolation in one step. Lastly, we remark that, for the degree
anomaly check in Algorithm 2.6, we use the degree of H̃ in the variable xd (line 10); while
in Algorithm 2.7 we use the degree of H̃ in the variable xd−1, see line 13. Now, the only
missing part is the efficient GCD algorithm in Zm[x] which we discuss next.

2.3.3 Computing univariate GCDs

Clearly, since Zm is a field, we can employ the Euclidean algorithm to compute a GCD
in Zm[x]. However, the Euclidean scheme heavily uses divisions which are equivalent to
computing expensive modular inverses in Zm[x], and we would like to avoid this. First,
observe that the primitive GCD algorithm (PGCD from Section 2.1.3) applied to f , g ∈
D[x] generates a sequence of polynomials which, in general terms, can be written as:

αiFi−1 = QiFi + βiFi+1 with deg(Fi+1) < deg(Fi) (i = 2, . . . , k),
prem(Fk−1, Fk) = 0,

where F1 = f , F2 = g, Qi = pquo(Fi−1, Fi), and αi, βi ∈ D. This is called a polynomial
remainder sequence (PRS) generated by f and g which also arises later in our discussion
in relation to the resultant computations. Particularly, for the primitive GCD algorithm
we have: αi = lcf(Fi)δi+1, where δi = deg(Fi−1) − deg(Fi), and βi = cont(prem(Fi−1, Fi)).
This is known as the primitive PRS. By choosing such βi in each step of the algorithm, we
can keep the size of the remainders minimal. In Zm[x], coefficient growth is no longer a
problem and, in fact, all polynomials are primitive, hence we can trivially set βi = 1. The
resulting sequence is called the Euclidean PRS.

Now, it becomes clear how to efficiently compute a GCD in Zm[x]. We run the prim-
itive GCD algorithm with βi = 1, and in the end normalize the GCD polynomial by
converting it to monic form. There is no need to multiply the result by the GCD of the
contents. This concludes our discussion of a modular GCD algorithm. The next sec-
tion is devoted to the computation of resultants which is another fundamental symbolic
algorithm.

2.4 Resultants
In this section, we introduce the concept of the resultant of two polynomials. As men-
tioned in the introduction, resultants have many applications, for instance, in the topolog-
ical study of algebraic curves, non-linear systems solving or computer graphics. Roughly
speaking, the resultant is an elimination tool which provides us an algebraic criterion to
decide whether a system of polynomial equations has a common solution expressed in
terms of the coefficients of these polynomials. It should be noted that we discuss here
what is known as the Sylvester resultant or the resultant of two polynomials, while, in
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most general form, the resultant can be defined for an arbitrary (finite) number of poly-
nomials, see (CLO98, Chapter 3). We begin with the definition and basic properties, and
then discuss in detail a modular approach to computing resultants.

2.4.1 Definition and main properties

To avoid excessive notation, we shall agree to write the definitions in the domain D[x]
(as long as no ambiguity occurs) whereas it is assumed that D itself can be a polynomial
domain, thereby extending the definitions to the multivariate case.

Definition 2.4.1. Let f , g ∈ D[x] be non-zero polynomials of degrees p, q, respectively.
Sylvester’s matrix1 S associated with f and g is (p + q) × (p + q) matrix defined as:

S =



fp fp−1 . . . f0 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 fp fp−1 . . . f0

gq gq−1 . . . g0 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 gq gq−1 . . . g0


,

where the first q rows are formed of coefficients of f , and the last p rows are formed of
coefficients of g. We shall also write S (x) to emphasize that the matrix S is associated with
polynomials f and g in the indeterminate x. •

Definition 2.4.2. The resultant of f , g ∈ D[x], denoted by res( f , g), is the determinant of
Sylvester’s matrix S :

res( f , g) = det(S ) ∈ D.

Similarly, we may write resx( f , g) to include the indeterminate x in the definition. •

For example, given two bivariate polynomials f , g ∈ D[x, y], resx( f , g), defined as the
determinant of S (x), is a univariate polynomial in the variable y. Below, we outline the
basic properties of resultants. Some of them can be readily verified using the properties of
determinants, see also (Yap00, § 4), (Coh03, Chapter 7). Let f and g be two polynomials
as in Definition 2.4.1, then:

• res( f , g) is a polynomial homogeneous in the coefficients of f and g;
• res( f , g) = (−1)pq · res(g, f );
• res( f · h, g) = res( f , g) · res(h, g), where h ∈ D[x];
• res(c · f , g) = cq · res( f , g) with c ∈ D;
• res(x − c, g) = g(c) with c ∈ D.

The following theorems display fundamental properties of the resultants.

1The matrix is named for Joseph Sylvester (1814–1897), an English mathematician who first studied its
properties in relation to the solution of a system of polynomial equations.
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Theorem 2.4.1: Let f , g ∈ D[x] be polynomials of degrees p, q > 0, respectively. Then,
there exist non-zero polynomials s, t ∈ D[x] with deg(s) < q and deg(t) < p, such that

s · f + t · g = res( f , g),

where s and t are often called resultant cofactors of f and g. ♦

Proof Let S be Sylvester’s matrix associated with f and g. It is immediate to verify that,
if we multiply S by the column vector v = [xp+q−1, . . . , x, 1]T , we obtain a vector formed
of polynomials f and g multiplied by consecutive powers of x, in other words:

(S · v)T = [xq−1 f , xq−2 f , . . . , f , xp−1g, xp−2g, . . . , g]T .

Next, using Cramer’s rule for the last component of v (which equals to 1) yields:

det



fp fp−1 . . . f0 0 . . . 0 xq−1 f

0
. . .

. . .
. . .

...
0 . . . 0 fp fp−1 . . . f1 f
gq gq−1 . . . g0 0 . . . 0 xp−1g

0
. . .

. . .
. . .

...
0 . . . 0 gq gq−1 . . . g1 g


= det(S ).

The result follows if we expand the determinant on the left-hand side by minors along the
last column. By the same token, it implies that the polynomials s and t can be rep-
resented as the determinants of special matrices obtained from Sylvester’s matrix by
replacing the last column with the column vectors [xq−1, . . . , x, 1, 0, . . . , 0]T and
[0, . . . , 0, xp−1, . . . , x, 1]T of size (p + q), respectively.

The next result can be seen as a consequence of the theorem above.

Theorem 2.4.2: For polynomials f , g ∈ D[x], defined over a UFD D, res( f , g) = 0 if
and only if f and g have a non-trivial common factor in D[x]. For proof, see (BPR06,
Prop 4.15). ♦

Finally, this last theorem establishes a more deeper connection between the resultant and
the roots of polynomials.

Theorem 2.4.3: If polynomials f , g ∈ D[x] of degrees p, q > 0, are written in the form
f = lcf( f )

∏p
i=1(x − αi) and g = lcf(g)

∏q
i=1(x − βi), then:

res( f , g) = lcf( f )q
p∏

i=1

g(αi) = (−1)pq lcf(g)p
q∏

i=1

f (βi) = lcf( f )q lcf(g)p
p∏

i=1

q∏
j=1

(αi − β j).

For proof, see (Yap00, Thm. 15), (BPR06, Thm. 4.16). ♦
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Algorithm 2.8 Resultant computation in a Euclidean domain F[x]
1: procedure resultant_prs(f, g ∈ F[x]) . returns res(f, g) ∈ F[x]
2: R← 1, a← f, b← g
3: p← deg(a), q← deg(b)
4: while (q , 0) do . compute remainder sequence
5: r← rem(a, b), s← deg(r)
6: R← R · (−1)pq · lcf(b)p−s

7: a← b, b← r, p← q, q← s
8: od
9: return (R · lcf(b)p) . multiply by the last coefficient

10: end procedure

2.4.2 Computing resultants
Classical algorithms to computing resultants are based on the following theorems.

Theorem 2.4.4: Let F[x] be a Euclidean domain, and f , g ∈ F[x] polynomials of degrees
p, q, respectively. Then, denoting by r a remainder in the Euclidean division of f by g, it
holds that:

res( f , g) = (−1)pq lcf(g)p−s res(g, r), where s = deg(r).

For proof, see (BPR06, Lem. 4.17). ♦

It follows that, the resultant can be calculated by repeatedly applying Theorem 2.4.4.
Pseudocode for the resultant computation based on the Euclidean scheme is given in Al-
gorithm 2.8. To extend the resultant algorithm to multivariate polynomials, we can utilize
a pseudo-division property:

Theorem 2.4.5: Suppose f , g ∈ D[x] are polynomials of degrees p, q > 0, respectively,
with p ≥ q, and D is a UFD. Then, for r = prem( f , g), we have:

res( f , g) = (−1)pq res(g, r)/ lcf(g)δq−p+q, where s = deg(r), and δ = p − q + 1.

For proof, see (Coh03, Thm. 7.12). ♦

Unwinding the recursive definition in Theorem 2.4.5 leads us to the polynomial remainder
sequence (PRS) which we have already met in Section 2.3.3. As we have seen, one can
obtain a different PRS depending on the choice of the parameters αi and βi which, in
turn, affects the degree and coefficient growth during the computation of resultant. In that
sense, a good compromise between two extreme cases, the Euclidean and primitive PRS,
is a subresultant PRS which is often used to compute resultants.

Definition 2.4.3. For f , g ∈ D[x], the subresultant PRS is the sequence of polynomials Fi

starting with F1 = f , F2 = g, and defined as (i = 2, . . . , k):

αiFi−1 = QiFi + βiFi+1, with deg(Fi+1) < deg(Fi), prem(Fk−1, Fk) = 0,

where
αi = lcf(Fi)δi+1, δi = deg(Fi−1) − deg(Fi),
β2 = (−1)δ2+1, βi = − lcf(Fi−1) · ψδi

i (i = 3, . . . , k), and

ψ2 = −1, ψi = (− lcf(Fi−1))δi−1 · ψ1−δi−1
i−1 (i = 3, . . . , k). •
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We skip the pseudocode for subresultant PRS algorithm as it is not relevant in the context
of our present discussion, and refer the interested reader to (Coh03, Chapter 7). We
next consider a homomorphism approach which provides us a better way to calculating
resultants especially in the multivariate domains.

2.4.3 Modular algorithm
As noted earlier, the modular resultant algorithm was first introduced by Collins in (Col71).
From a high-level perspective, the modular GCD and resultant algorithms closely resem-
ble each other with the main difference being that for the latter one there is nothing like
“division check” is available to enable early termination of the algorithm. A ramifica-
tion of this is that the resultant algorithm uses a-priori bounds for the height and degree
of the resultant.1 Luckily, the bounds on resultants are easily obtainable thanks to lin-
ear algebra analysis. In (Mon05), the modular algorithm has been made output-sensitive
which is a significant improvement when the aforementioned bounds are inaccurate. Yet,
the price for this is that there is a small probability that the algorithm returns incorrect re-
sults. In addition, this approach requires a very delicate treatment of “unlucky” primes. In
this overview, we focus on Collins’ original approach, not considering its improvements,
which is sufficient for our needs. This will also facilitate the complexity analysis of the
modular algorithms as provided in Section 2.5. We start by formulating the necessary
conditions to compute resultants using a modular approach.

Theorem 2.4.6 (Collins): Let f , g ∈ D[x] be polynomials of degrees p, q > 0 over some
integral domain D, and φ : D → D′ be a homomorphism of rings. This also induces a
natural homomorphism from D[x] to D′[x]. Suppose that, deg(φ( f )) = p and deg(φ(g)) =

r, 0 ≤ r ≤ q, then
φ(res( f , g)) = φ(lcf( f )q−r) · res(φ( f ), φ(g)). ♦

Proof Let S be Sylvester’s matrix associated with f and g, and S̃ be Sylvester’s matrix
for homomorphic images f̃ := φ( f ) and g̃ := φ(g), respectively. If r = q, then, by
definition, φ(S ) = S̃ and

φ(res( f , g)) = φ(det(S )) = det(φ(S )) = det(S̃ ) = res( f̃ , g̃),

which shows the first part. If r < q, S̃ is of size (r + p) × (r + p) and can be obtained
from φ(S ) by deleting its first q − r rows and columns since the coefficients g̃q, . . . , g̃q−r+1

vanish. Next, observe that, the first q−r columns of φ(S ) contain φ(lcf( f )) on the diagonal
and are zero below it. Hence, by the property of determinants:

φ(res( f , g)) = φ(det(S )) = det(φ(S )) = φ(lcf( f )q−r) · res(φ( f ), φ(g))

which proves the claim.

Similar to the case of GCD (cf. Theorem 2.3.1), the above theorem states that, to recon-
struct the result from homomorphic images, we must not take those homomorphisms φ

1For definition of the height of a polynomial, see Section 2.1.2.
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Algorithm 2.9 Modular resultant algorithm: part I
1: procedure res_int(f, g ∈ Z[x1, . . . , xd]) . returns resxd (f, g) ∈ Z[x1, . . . , xd−1]
2: µ← res_height_bound(f, g, xd) . estimate the height of the resultant w.r.t. variable xd
3: (p, q)← (degxd

(f), degxd
(g)), (R,M)← (0, 0)

4: while true do
5: (F̃, G̃)← (0, 0)
6: while (degxd

(F̃) < p) or (degxd
(G̃) < q) do . obtain the next prime modulus

7: m← next_prime() . compute homomorphic images modulo m:
8: F̃← φm(f), G̃← φm(g) . here F̃, G̃ ∈ Zm[x1, . . . , xd]
9: od

10: R̃← res_mod(F̃, G̃,m) . compute resultant in Zm[x1, . . . , xd]
11: if (M = 0)
12: (R,M)← (R̃,m) . initialize at the 1st iteration
13: else
14: for all scalar coefficients Re ∈ Z of R do . add the image R̃ to the result R
15: Re ← cra_incremental({Re, R̃e}, {M,m})
16: M← M ·m . add the prime number to the set
17: fi . terminate if coefficients are large enough
18: if (M ≥ µ) then return R fi
19: od
20: end procedure

for which φ(lcf( f )) and φ(lcf(g)) vanish simultaneously. In essence, the result of Theo-
rem 2.4.6 is even stronger as it asserts that we can reconstruct the resultant even in the
situation where one of the leading coefficients (but not both) vanishes under homomor-
phism. Moreover, in contrast to GCD computations, there is no “degree anomaly” prob-
lem (cf. Theorem 2.3.1) provided that the conditions of the above theorem are satisfied.

For polynomials f , g ∈ Z[x1, . . . , xd], the modular resultant algorithm can be summa-
rized as follows:

(a) calculate the number of homomorphisms required;
(b) find a homomorphism φ such that deg(φ( f )) = deg( f ) and deg(φ(g)) = deg(g) which

is equivalent to: lcf( f ), lcf(g) < ker φ;
(c) compute res(φ( f ), φ(g)) using the image algorithm;
(d) terminate the algorithm if the number of images suffices to reconstruct the result;

otherwise, go back to step (b).

Again, in case of multivariate polynomials, we invoke the algorithm recursively in step
(c) until it eventually comes to computing the resultants over Zm[x]. In the latter case,
we can apply the Euclidean PRS (Algorithm 2.8) or, even better, use pseudo-division to
compute the resultants, see Theorem 2.4.5 in Section 2.4.2.

To make a concrete algorithm out of this, we have to bound the number of evalua-
tion and modular homomorphisms required. Suppose that for given polynomials f , g ∈
Z[x1, . . . , xd], we wish to compute the resultant R := resxd ( f , g) with respect to the vari-
able xd. For evaluation homomorphism, the degree bound on R applies, which is easily
computable from Sylvester’s matrix. Let S (xd) be Sylvester’s matrix associated with f
and g such that resxd ( f , g) = det S (xd). We can bound d := degxd−1

(R) by summing up the
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Algorithm 2.10 Modular resultant algorithm: part II
1: procedure res_mod(f, g ∈ Zm[x1, . . . , xd], m) . returns resxd (f, g) ∈ Zm[x1, . . . , xd−1]
2: if (d = 1) then
3: return res_univariate(f, g,m) . invoke univariate resultant algorithm
4: fi
5: δ← res_degree_bound(f, g, xd−1) + 1 . bound for the degree of the resultant in xd−1
6: (p, q)← (degxd

(f), degxd
(g)), (S, n)← ({∅}, 0)

7: while true do
8: (F̃, G̃)← (0, 0)
9: while (degxd

(F̃) < p) or (degxd
(G̃) < q) do . find a proper evaluation point α ∈ Zm

10: α← next_point(m) . compute homomorphic images modulo (xd−1 − α):
11: F̃← φxd−1−α(f), G̃← φxd−1−α(g) . here F̃, G̃ ∈ Z[x1, . . . , xd−2, xd]
12: od
13: R̃← res_mod(F̃, G̃,m) . compute the resultant in Zm[x1, . . . , xd−2, xd]
14: if (n < δ) then
15: S← S ∪ {(α, R̃)}, n← n + 1 . collect the next evaluation point
16: fi
17: if (n = δ) then . the number of points suffices for interpolation
18: R← newton_interp(S) . reconstruct polynomial
19: return R
20: fi
21: od
22: end procedure

maximal degrees along the rows and columns of the matrix S (xd), see also (Mon05):

d1 =

p+q∑
i=1

p+q
max

j=1
degxd−1

(S (xd)
i, j ), d2 =

p+q∑
j=1

p+q
max

i=1
degxd−1

(S (xd)
i, j ), and d ≤ min(d1, d2), (2.5)

where p = degxd
( f ) and q = degxd

(g). In addition, if d = 2, one can apply Bezout’s
theorem, saying that the number of roots of R (and hence the degree of R) is bounded
by: degx( f ) degy(g) + degy( f ) degx(g). From our experiences, Bezout’s bound is almost
tight for dense polynomials while the bounds derived from Sylvester’s matrix give better
results when polynomials are sparse. Therefore, in practice, the combination of both types
of estimates is preferred.

In case of a modular homomorphism, one usually applies Hadamard’s inequality to
bound the size of a matrix determinant. The next bound is due to (GR74), where the au-
thors extended Hadamard’s bound to matrices with polynomial entries, see also (Mon05).
First, we form a matrix Ŝ whose entries are the 1-norms of respective entries of S (xd), then
it follows that:

|R|∞ <
∏p+q

i=1

√∑p+q

j=1
(Ŝ i, j)2, where Ŝ i, j = |S (xd)

i, j |1 (i, j = 1 . . . p + q). (2.6)

It should be noted that, the above bounds are not sharp, although they usually work well
in practice. To derive sharp estimates, one can apply the theory of sparse resultants,
see (CLO98). For example, the degree of the resultant can be bounded by the Mixed
Volume of Newton polytopes defining the supports of two polynomials.1 For the height

1This holds only when the so induced polynomial system contains only toric roots, otherwise further
corrections are necessary.
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of the sparse resultant, see (Som04). However, the computational cost of such bounds is
much higher, and therefore they are rarely used in real applications.

Having the resultant estimates, we can present a complete modular approach now.
The algorithm comprising two procedures is very similar to the modular GCD algorithm
from Section 2.3.2. However, remark that, to obtain the next modulus/evaluation point,
we do not use lexicographical ordering for multivariate polynomials: instead, polyno-
mials are treated in recursive representation. In the first part of the algorithm (res_int
in Algorithm 2.9) we apply modular homomorphism, and call the procedure res_mod
in Algorithm 2.10 computing the resultant in a finite field. The latter algorithm proceeds
by applying evaluation homomorphisms recursively until it eventually remains to com-
pute the resultant in Zm[x] in which case a univariate resultant algorithm is invoked.

Example 2.4.1. To exemplify the modular approach, we outline the computation of the
resultant R := resy( f , g) of the following polynomials:

f = 2xy2 + (x2 + 2x − 1)y − x + 1, g = 2x2y2 + (x + 3)y − 3x2 + 2.

Application of the degree bounds (2.5) yields deg(R) ≤ 8, and hence 9 points suffices
for interpolation. The Hadamard’s bound (2.6) implies that |R|∞ < 198, hence it suffices
to evaluate the resultant for the following three primes: 7, 11 and 13. Taking the first
modulus m = 7, we find that the respective modular images f7, g7 ∈ Z7[x, y] coincide
with f and g. Then, evaluating the polynomials at x = {1, 2, . . . , 9} and calculating the
resultants in Z7[y], we obtain:

res( f7(1, y), g7(1, y)) = res(2y + 2y2,−1 − 3y + 2y2) = −2,

res( f7(2, y), g7(2, y)) = res(−1 − 3y2,−3 − 2y + y2) = 0,

res( f7(3, y), g7(3, y)) = res(−2 − y2, 3 − y − 3y2) = −1,

res( f7(4, y), g7(4, y)) = res(−3 + 2y + y2, 3 − 3y2) = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . .

res( f7(9, y), g7(9, y)) = res(−1 − 3y2,−3 − 2y + y2) = 0.

Interpolating the polynomial at nine x values gives the first resultant image in Z7[x]:

res( f , g, y) mod 7 = x8 − 3x7 + 2x6 + 3x5 − 2x4 + 2x3 + 2x.

Repeating the calculations modulo m = 11 yields:

res( f11(1, y), g11(1, y)) = res(2y + 2y2,−1 + 4y + 2y2) = 1,

res( f11(2, y), g11(2, y)) = res(−1 − 4y + 4y2, 1 + 5y − 3y2) = 4,

res( f11(3, y), g11(3, y)) = res(−2 + 3y − 5y2,−3 − 5y − 4y2) = 4,

res( f11(4, y), g11(4, y)) = res(−3 + y − 3y2,−2 − 4y − y2) = 4,
. . . . . . . . . . . . . . . . . . . . . . . . . . .

res( f11(9, y), g11(9, y)) = res(3 − y − 4y2, 1 + y − 3y2) = −3,

and the resultant image in Z11[x] has the following form:

res( f , g, y) mod 11 = 5x8 − 2x7 + 5x6 − 5x5 − 2x4 + 3x3 − 3x.
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Next, applying the coefficient-wise Chinese remaindering, we calculate:

res( f , g, y) mod 77 = −6x8 − 24x7 + 16x6 + 17x5 − 2x4 − 19x3 + 30x.

Computations for the remaining prime m = 13 show that:

res( f , g, y) mod 13 = −6x8 + 2x7 + 3x6 + 3x5 − 2x4 − 5x3 + 4x.

Finally, by combining the modular images using the CRA, one obtains:

res( f , g, y) mod 1001 = −6x8 − 24x7 + 16x6 + 94x5 − 2x4 − 96x3 + 30x,

which is the resultant of f and g in Z[x]. ♣

In the next section, we conclude our discussion of modular techniques by deriving the
complexity of GCD and resultant algorithms.

2.5 Complexity analysis of modular algorithms
In this section, we analyze the computational complexity of the modular algorithms con-
sidered in the previous sections assuming both sequential and parallel models of computa-
tion. To facilitate the complexity analysis, we primarily concentrate on the bivariate case,
that is, where f , g ∈ Z[x, y], leaving out a more general case that can be reconstructed
by analogy. We begin with the definition of the model of computations, and then recall
the complexity of basic operations before discussing the main algorithms. For the com-
plexity of symbolic algorithms, the reader may also consult (Sho09, Section 18), (Ker09,
Section 2.4) or (BPR06, Section 8).

2.5.1 Model of computations
There is a number of computational models available to measure the amount of resources
needed by an algorithm to execute. These models, for example, include Turing machines,
Lambda calculus, Boolean circuits, Random Access Machines (RAM), etc., and mainly
in the set of allowable operations and their respective costs, see (Yap00). For algebraic
manipulation, the most commonly used model is that of Boolean circuits where inputs
are given by a sequence of bits and all bit operations having at most two input operands
(realized by logic gates) have a unit cost. This model is widely adopted in the analysis
of symbolic algorithms because the latter ones often need to operate on large integers (or
rational numbers) which fall far beyond the range of numbers representable by a single
machine word. Naturally, such arithmetic operations cannot be assumed to have a unit
cost: instead, we need to bound the number of bit operations performed by the algorithm
in the worst case. In this context, one speaks about the bit complexity of an algorithm,
as opposed to algebraic complexity, where arithmetic operations on a given algebraic
structure (such as the ring of integers Z or polynomials over some domain D) are assumed
to be primitive.

In the Boolean circuit model, it is common to describe each integer quantity a ∈
Z involved in computations by a corresponding bitlength (or bitsize) which is simply
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the number of bits needed to store this quantity by the computer. Similarly, for rational
number q ∈ Q, the bitlength can be defined as the maximal bitlength of its numerator and
its denominator. The main complexity measures in this model are circuit depth and circuit
width. Translated into the language of symbolic computations, they correspond to the
number of arithmetic operations (for instance, over Z) performed by the algorithm in the
worst case and the maximal bitlength of numbers involved in these computations. When
multiplied together, these measures give a meaningful estimate for the overall complexity
of an algorithm. The complexity bounds are usually written in big-Oh notation, denoted
by O(x).

To analyze the complexity of parallel algorithms we adopt a standard PRAM (Par-
allel Random Access Machine) model of computing. Each component of this model is
a random access machine which is an arithmetic processor having its own register file
and capable of executing a usual set of arithmetic instructions at unit cost. The PRAM
model provides any (problem-dependent) number of processors and assumes that these
processors can simultaneously access a sufficiently large block of shared memory. It is
also supposed that inter-processor communication and synchronization overhead can be
neglected since the cost of arithmetic computations carried out by the processors is dom-
inating. We believe that the PRAM model yields a fairly good approximation of the GPU
threading model, and thus it can be used to evaluate the computational cost of algorithms
running on the GPU. This is justified by the fact that GPU threads residing in the same
thread block (see Section 4.1) can communicate through shared memory and synchronize
with barriers without any noticeable overhead as long as one keeps high arithmetic inten-
sity of computations which matches the assumptions of the PRAM model. Certainly, the
assumption of having unlimited processor resources is not realistic. However, the GPU
allows an (almost) arbitrary number of thread blocks to be scheduled for execution (which
are then processed concurrently or in a queued fashion). In this case, the real computing
times depend on the physical number of processors available on the device. We will de-
note the parallel complexity by OP(x, p) meaning that a problem can be solved in O(x)
parallel time on p processors.

2.5.2 Complexity of basic operations

First, we recall the complexity of primitive operations on integers and polynomials. We
shall write TB(a ◦ b) denoting the bit-complexity of performing an operation a ◦ b. Let
a, b ∈ Z be the integers of bitlength τ1, τ2 ∈ N, respectively. Here, we assume that a and b
might have different bitlengths because, for the analysis of the modular algorithms, it will
sometimes be required to deal with unbalanced operands. For addition and subtraction, it
holds that

TB(a ± b) = O(τ1 + τ2), (2.7)

while for school-book long multiplication and division:

TB(a · b) = O(τ1τ2), (2.8)
TB(a/b) = O(τ1(τ1 − τ2)), where τ1 > τ2. (2.9)
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For integer GCD, Collins in (Col74) showed that the complexity of the Euclidean algo-
rithm is bounded by:

TB(gcd(a, b)) = O(τ2(τ1 − τ3)), if τ1 > τ2, (2.10)

and τ3 is the bitsize of gcd(a, b). His argument exploits the fact that the number of inte-
ger divisions is bounded by τ1, where, in the edge case, the remainders form a Fibonacci
sequence. Then, the bound follows by carefully combining the complexity of single di-
vision steps. For Chinese remaindering, suppose we wish to add a residue x modulo m
to the product X modulo M, where the bitlengths of M and m are τ1 and τ2 (τ1 > τ2),
respectively. Analyzing Algorithm 2.3 from Section 2.2.2, we conclude that the complex-
ity of one incremental step is dominated by that of a long integer multiplication, while
computing a modular inverse (using the Extended Euclidean algorithm) and the reduction
modulo m can also be done within this time. Therefore,

TB(cra_incremental({x, X}, {m,M})) = τ1τ2. (2.11)

Summing up the costs of all individual CRA steps, we conclude that, in order to recover
an integer X of bitlength τ from k residues, one needs O(τ2) bit operations. Using an
asymptotically fast “divide-and-conquer” algorithm, this can be done in O(MB(τ) log τ),
where MB(τ) stands for the bit complexity of multiplying two τ-bit integers, see (vzGG03,
Cor. 10.23).

Let us now consider the polynomial operations. Suppose, f , g ∈ Z[x] are polynomials
of degree p and q and coefficients with bitlength τ1 and τ2, respectively. The complexity
of addition and subtraction is:

TB( f ± g) = O((pτ1 + qτ2) ·max(p, q)) (2.12)

where we consider the two cases separately and then combine the bounds. For classical
multiplication, it holds that:

TB( f · g) = O(pq{τ1τ2 + log min(p, q)}) (2.13)

since it amounts for O(pq) multiplications in Z followed by O(pq) additions of integers
with bitsize at most τ1 + τ2 + log min(p, q).

We finally estimate the amount of work of some relevant operations in Zm[x]. Let
f̂ , ĝ ∈ Zm[x] be polynomials of degrees p, q, respectively. We shall agree that operations
in Zm can be performed in a constant time because it is assumed that any modulus m
has a fixed bitlength, see discussion in Section 2.5.3. For polynomial division using the
Euclidean algorithm, we have (see (Sho09, Thm. 17.1)):

TB(quo( f , g)) = TB(rem( f , g)) = O(p(p − q)), (2.14)

provided that p > q. On a similar note, the complexity of the Euclidean GCD is bounded
by:

TB(gcd( f̂ , ĝ)) = O(q(p − r)), if p > q, and r = deg(gcd( f̂ , ĝ)), (2.15)

where the argument is essentially the same as for integer GCDs, see also (Sho09, Thm. 17.3).
To evaluate the polynomial f̂ (x) at α ∈ Zm one demands for

TB( f̂ (α)) = O(n) (2.16)
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operations in Zm which directly follows from expanding f̂ (α) according to Horner’s scheme.
It remains to show the complexity of polynomial interpolation. From the analysis of Al-
gorithm 2.5 from Section 2.2.3, we immediately conclude that in order to interpolate a
polynomial from n + 1 points, one needs

TB(newton_interp({α0, . . . , αn}, {y0, . . . , yn})) = O(n2) (2.17)

operations in Zm. Indeed, the loop in lines 5–9 has a complexity ofO(n2) finite field opera-
tions, and the same amount of work is required to reconstruct a polynomial in lines 11–13.

2.5.3 GCD algorithm
In this section, we are going to derive the complexity of Brown’s algorithm applied to bi-
variate polynomials f , g ∈ Z[x, y], see Algorithms 2.6 and 2.7 in Section 2.3.2. We should
emphasize, however, that our complexity bounds do not apply to the worst case as we
agree that unlucky homomorphisms should never occur. This is a reasonable assumption
since, as noted in Section 2.3.2, the probability of encountering an unlucky homomor-
phism is inversely proportional to the size of a prime number, and is exceedingly small
for machine word-sized primes (31 or 63 bits) commonly used for implementation. Be-
sides, we wish to obtain the bounds which reflect the expected behaviour of the algorithm
because, otherwise, an adversary can always construct an example which would cause
unlucky homomorphisms to occur for every chosen prime modulus. On the other hand,
for the complexity analysis we do not enforce the use of asymptotically fast integer arith-
metic which makes our bounds more realistic. Further restrictions on the input parameters
of the algorithm are listed below:

• prime numbers m have fixed bit-size (usually chosen to be single-word integers)
meaning that the operations in Zm are assumed to be of unit cost;

• the coefficients of polynomials f and g are of reasonable size, so that the supply of
prime numbers cannot be exhausted;

• the degrees of f and g in each variable do not exceed any realistic bounds so that
the number of elements in Zm for each prime m suffices for interpolation.

Complexity of the serial algorithm. In what follows, suppose f , g ∈ Z[x, y] are polynomi-
als of degree at most n in each variable with scalar coefficients bounded by 2τ, τ ∈ N. We
first consider Algorithm 2.7 computing a GCD over Zm since it appears as a subroutine of
Algorithm 2.6. Thus, let ( f̂ , ĝ) = (φm( f ), φm(g)) ∈ Zm[x, y] be the homomorphic images
of f and g. In line 6 of Algorithm 2.7, we compute the contents of f̂ and ĝ considered
as polynomials with coefficients in Zm[y], the latter operation reduces to computing the
series of GCDs in the coefficient domain. Given that, f̂ and ĝ have at most (n + 1) terms
each (considered as polynomials in the variable y), and the cost of a univariate GCD over
Zm is O(n2), we conclude that:

TB(F̂ ← f̂ / cont( f̂ )) = TB(Ĝ ← ĝ/ cont(ĝ)) = O(n3). (2.18)

The time to divide by the contents is again bounded by O(n3) because there are at most
2(n + 1) divisions in Zm[x] each of which costs O(n2) operations. The complexity of
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computing c and q in line 7 is negligible. The number of evaluation points δ needed by
the algorithm can be estimated as

δ ≤ max(degy( f̂ ), degy(ĝ)) = O(n). (2.19)

This is a worst-case bound, and hence we can omit the trial division in line 23. Under
the assumption that the degrees of f and g are reasonably bounded, we conclude that
there are enough elements in Zm to generate O(n) evaluation points. Evaluating q(α)
in line 11 amounts for O(n) operations in Zm. Moreover, as we have agreed that no
unlucky homomorphism can occur, the cost of choosing evaluation points in line 11 can
be neglected.1 Application of homomorphisms in line 12, is equivalent to evaluating (n+1)
coefficients of f̂ and ĝ (considered as polynomials with coefficients in Zm[x]) where each
of them has degree at most n, thus:

TB(F̃ ← φy−α(F̂)) = TB(G̃ ← φy−α(Ĝ)) = O(n2), (2.20)

due to the fact that operations in Zm can be performed in O(1) time. In line 13, we invoke
the algorithm recursively, which in turn invokes a univariate GCD algorithm in Zm[x],
therefore:

TB(H̃ ← gcd_univariate(F̃, G̃,m)) = O(n2). (2.21)

The cost of the remaining operations in lines 13–14 is certainly dominated by O(n2). In
total, the complexity of the main loop (without interpolation) evaluates to O(n3). Interpo-
lation from O(n) points costs O(n2) field operations. Since we apply it to each coefficient
of H̃ separately, the total cost becomes:

TB(H ← newton_interp({α}, {H̃})) = O(n3). (2.22)

Then, the time for computing the primitive part of H in line 22, by essentially the same
reasoning as in (2.18), is bounded by

TB(Q← pp(H)) = O(n3). (2.23)

Finally, each multiplication of a coefficient of H by c ∈ Z[y] in line 24 can be performed in
O(n2) operations with the total cost again in O(n3). Summing up these bounds, it follows
that the overall running time of Algorithm 2.7 is

TB(gcd_mod( f̂ , ĝ ∈ Zm[x, y])) = O(n3). (2.24)

We now turn to the complexity analysis of Algorithm 2.6. Computing the contents to-
gether with primitive parts of f and g in line 2 amounts to

TB(F ← f / cont( f )) = TB(G ← g/ cont(g)) = O(τ2n2) (2.25)

bit operations as it is equivalent to computing at most (n + 1)2 GCDs in Z and the same
number of divisions. The time to calculate a GCD of the contents in line 3 is negligible.
To devise the complexity of the main loop of Algorithm 2.6, we need to bound the height

1Even if this is not the case and, suppose, we would need up to O(n) iterations to choose each evaluation
point (which is a very broad assumption), this cost is not dominating as we shall see below.
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of a GCD which gives the number N of primes needed by the algorithm in the worst case.
Extended Mignotte bound from (Cor04) implies that

|h|∞ ≤ 2(n+1)2
| f |2, where h ∈ Z[x, y], h | f , (2.26)

and thus N = O(n2 + τ). Again, we use the assumption that the supply of primes numbers
cannot be exhausted. Testing for m | q in line 8 can be done in O(τ) bit operations since
we divide q by an integer m of a fixed bitlength. Assuming that there are no unlucky
primes, the next prime can be found in the first iteration of the loop in line 8. Next, in
line 9 we reduce the coefficients of F and G modulo m. Provided that, these polynomials
have at most (n + 1)2 non-zero terms, the bit complexity is bounded by

TB(F̃ ← φm(F)) = TB(G̃ ← φm(G)) = O(τn2), (2.27)

where we again use the bit complexity of integer division for unbalanced operands. In
line 10, we invoke the procedure gcd_mod which has cost O(n3). To normalize scalar
coefficients of H̃ = gcd(F̃, G̃) in line 12, one clearly needs

TB(H̃ ← q̃ · lcf(H̃)−1 · H̃) = O(n2) (2.28)

finite field operations. As there are no concerns regarding unlucky primes, the cost of the
main loop (not counting CRA) evaluates toO(n2(τ+n)N). If we apply CRA incrementally
in lines 15–16 to each of (n + 1)2 scalar coefficients of H̃, where the product of primes is
bounded by N, then the cumulative complexity of Chinese remaindering becomes:

TB(H ← cra_incremental({m}, {H̃})) = O(N2n2) (2.29)

To extract a primitive part of H in line 20, one needs at most (n + 1)2 divisions and GCD
computations in the coefficient domain, therefore

TB(Q← pp(H)) = O(τ2n2). (2.30)

Finally, as we use the worst-case bound N for the number of moduli, the trial division in
line 21 can be suppressed, and the total cost of the modular algorithm evaluates to

TB(gcd_int( f , g ∈ Z[x, y])) = O(n2(τ + n2)2). (2.31)

Unfortunately, the overall complexity is dominated by that of Chinese remainder algo-
rithm: this is because the bound N on the bitlength of polynomial divisors seems to be
from optimal, particularly in the multivariate case. Yet, in the analysis, we have not relied
on asymptotically fast methods for integer arithmetic which are quite often used to get
better complexity. In our case, the complexity can be slightly improved by employing the
asymptotically fast Chinese remaindering, see Section 2.5.2:

TB(gcd_int( f , g ∈ Z[x, y])) = O(n2{(τ + n)(τ + n2) + MB(τ + n2) log n}).1 (2.32)

Alternatively, we could apply Fast Fourier Transform (FFT) in place of the classical
evaluation-interpolation scheme. However, in this situation, our assumption regarding

1MB(τ) denotes the complexity of multiplying two τ-bit integers.
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the absence of unlucky homomorphisms would become rather speculative because, for a
finite field FFT, it is no longer possible to choose evaluation points (the roots of unity) at
random.

The same bounds are easily obtainable for univariate polynomials f , g ∈ Z[x]. In this
case, the number N of moduli is bounded by O(n + τ) due to Mignotte’s bound (Mig74).
The cost of applying modular homomorphism becomes O(nτ), and we also replace the
invocation of the algorithm gcd_mod by the Euclidean GCD working in Zm[x] which runs
in O(n2) field operations. The main loop now executes in O(N · n(n + τ)) bit operations.
The complexity of Chinese remaindering for (n + 1) coefficients of a GCD polynomial is
O(N2n). Thus, the overall complexity of a univariate GCD algorithm becomes

TB(gcd_int( f , g ∈ Z[x])) = O(n(τ + n)2). (2.33)

For comparison, calculating a GCD using the subresultant PRS algorithm has a complex-
ity of O(n2MB{n(τ + log n)}) bit operations, see (Ker09, Thm. 2.4.19). The complexity
of asymptotically fast GCD algorithm (based on half-GCD approach) evaluates to Õ(n2τ)
bit operations,1 see (Rei97, LR01). Yet, note that, the latter approach also assumes the
use of asymptotically fast integer arithmetic while, in our analysis, we do not rely on such
assumptions.

Complexity of the parallel algorithm. We briefly analyze the complexity of the parallel
algorithm assuming the PRAM model. For Algorithm 2.7, observe that it does not make
sense to use more than δ = n processors unless we can find some way to parallelize a
univariate GCD algorithm. Hence, the main loop of Algorithm 2.7 executes in OP(n2, n)
parallel time, where we assign each processor to one evaluation point. Computing the
primitive parts in (2.18) and (2.23) can also be done within this time. Finally, each of
O(n) coefficients of a GCD polynomial can be interpolated independently, hence the cost
of (2.22) becomes OP(n2, n). In summary, we obtain:

TB(gcd_mod( f̂ , ĝ ∈ Zm[x, y])) = OP(n2, n). (2.34)

In Algorithm 2.7, we could use N processors, where N is the number of moduli however,
then, Chinese remaindering becomes a bottleneck. The easiest way out is to split the
problem “coefficient-wisely” between n2 processors. In that case, the bit complexity of
computing primitive parts in (2.25) and (2.30) turns to OP(τ2, n2) since we process each
coefficient independently. On a similar note, the cost of Chinese remaindering in (2.29)
reduces to OP(N2, n2). The outer loop of the algorithm now runs in OP((τ + n2)N, n2)
parallel time since we use n2 processors to apply modular homomorphisms in (2.27) while
the procedure gcd_mod requires n processors to run in parallel. As a result, we have
managed to reduce the total complexity of the GCD algorithm to

TB(gcd_int( f , g ∈ Z[x, y])) = OP((τ + n2)2, n2) (2.35)

using parallel processing. In Section 3.3, we shall see that it is possible to obtain even
better parallel complexity if we employ the matrix-based approach for the subalgorithms.

1Õ(·) denotes a bit complexity omitting polylogarithmic in n and τ.
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2.5.4 Resultant algorithm
We next discuss the computing time of Collins’ modular algorithm given by Algorithms 2.9
and 2.10 from Section 2.4.3 which is applied to bivariate polynomials f , g ∈ Z[x, y]. We
shall try to keep the discussion brief because this algorithm essentially repeats the same
steps as the GCD algorithm analyzed in the previous section. First, remark that, the as-
sumptions introduced in Section 2.5.3 also apply to the resultant computations. Yet, by
unlucky homomorphisms, we now understand only those homomorphisms which cause
the leading coefficients of f and g to vanish simultaneously (cf. Theorem 2.4.6 in Sec-
tion 2.4.3).

Complexity of the serial algorithm. Let f , g ∈ Z[x, y] be polynomials of degree at most
n in each variable with scalar coefficients bounded by 2τ, τ ∈ N. Our goal is to derive
the complexity of computing resy( f , g) ∈ Z[x], the resultant with respect to the variable y.
We again start with Algorithm 2.10 to calculate the resultant of ( f̂ , ĝ) = (φm( f ), φm(g)) ∈
Zm[x, y] for each homomorphic image. For the degree bound δ in line 5, it trivially holds
by Bezout’s theorem that:

δ = deg(resy( f̂ , ĝ)) = O(n2). (2.36)

Evaluating the polynomials at x = α in line 11 costs

TB(F̃ ← φx−α( f̂ )) = TB(G̃ ← φx−α(ĝ)) = O(n2), (2.37)

operations in Zm. We suppose that the next evaluation point can be found in the first
iteration of the loop as no unlucky homomorphisms can occur. In fact, checking the
degree of F̃ and G̃ in line 6 can be done inO(n) field operations, thus we may even assume
that at most O(n) degree checks would be required for each evaluation point which does
not affect the final complexity. Then, we execute a univariate resultant algorithm having
the same complexity as the Euclidean GCD algorithm:

TB(R̃← res_univariate( f̃ , g̃,m)) = O(n2). (2.38)

The outer loop of Algorithm 2.10 is then repeated for each of O(n2) evaluation points,
yielding the total complexity of O(n4) finite field operations. Finally, to interpolate the
resultant polynomial of degree O(n2), we need

TB(R← newton_interp({α}, {R̃})) = O(n4). (2.39)

operations in Zm. In summary, the complexity of the resultant algorithm in Zm is bounded
by

TB(res_mod( f̂ , ĝ ∈ Zm[x, y])) = O(n4). (2.40)

The resultant in Z[x] is then calculated by Algorithm 2.9 making essential use of the
subalgorithm res_mod via modular homomorphism. We need to estimate the height of
the resultant to bound the number N of primes. Hadamard’s bound (2.6) in Section 2.4.3
yields

N ≤ | resy( f , g)|∞ = O(n(τ + log n)). (2.41)
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To reduce the coefficients of f and g modulo m in line 8, one requires

TB(F̃ ← φm( f )) = TB(G̃ ← φm(g)) = O(τn2) (2.42)

bit operations, see Section 2.5.3. Provided that, in the absence of unlucky homomor-
phisms, the next valid prime can be found in a single step, we proceed further. Invocation
of the algorithm res_mod to compute R̃ = resy(F̃, G̃) demands for O(n4) bit operations,
and the bit complexity of the main loop (without CRA) evaluates to: O(Nn2(n2+τ)). To re-
construct the integer resultant, we apply Chinese remaindering for each of n2 coefficients
of R where the product of primes is bounded by N, hence

TB(R← cra_incremental({m}, {R̃})) = O(N2n2). (2.43)

Combining the above estimates, the final complexity of the modular resultant algorithm
becomes:

TB(res_int( f , g ∈ Z[x, y])) = O(n4(τ + log n)(n + τ)), (2.44)

whereas the bit complexity of computing the resultants using the subresultant PRS can be
bounded as O(n6MB{n(log n + τ)}), see (Ker09, Thm. 2.4.17). Similarly, for the asymptot-
ically fast resultant algorithm, the bit complexity becomes Õ(n4τ log n), see (Rei97).

Complexity of the parallel algorithm. By analogy with GCD computations, for Algo-
rithm 2.10 (res_mod) we could use δ = n2 processors distributing the computations over
different evaluation points. Unfortunately, this would not lead to better overall complex-
ity because the latter one is still determined by that of polynomial interpolation. That is
why, we leave out the procedure res_mod and move to Algorithm 2.9. Here, the main
bottleneck is again Chinese remaindering. However, we still hope to improve the total
complexity by using N = O(n(τ + log n)) processors, so as to perform the computations
modulo each prime in parallel. In this way, the complexity of the main loop of Algo-
rithm 2.10 reduces to OP(n2(n2 + τ),N) where the two factors contributing to this bound
are the complexity of modular reduction (2.42) and that of invoking the subalgorithm
res_mod (2.40). For Chinese remaindering, we use n2 processors to recover each coef-
ficient of the resultant in parallel, hence the complexity in (2.43) becomes OP(N2, n2).
Combining the bounds together, we conclude that the resultant can be computed in

TB(res_int( f , g ∈ Z[x, y])) = OP(n2(n2 + τ),N) + OP(N2, n2) =

OP(n2(n2 + τ2), n{τ + n})
(2.45)

parallel time.

To sum up, as we have seen, the estimated parallel performance of the modular GCD
and resultant algorithms is largely limited by the fact that CRA and polynomial interpo-
lation in their classical forms are not available for parallel implementation. Likewise, the
Euclidean scheme lying in the core of both approaches further restricts the degree of par-
allelism provided by the modular algorithm. In the next chapter, we discuss matrix-based
algorithms which partially allow us to solve the above problems.

In addition, our analysis of modular algorithms suggests that, in order to achieve a high
performance, we should consider a parallel platform which has two levels of parallelism.
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The upper level is “coarse-grained” where only loose communication between processors
is needed: for example, for the solution of each modular problem in parallel. While
the lower one is “fine-grained” where processors need to work in close cooperation to
compute the result: this, for example, is required to realize parallel Chinese remaindering
or univariate GCD computations.
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computation

This chapter is one the main theoretical contributions of this thesis. We review an ele-
gant mathematical theory of shift-structured matrices, and then exploit a deep connection
between computations with polynomials and structured matrices to develop algorithms
which permit efficient realization on massively-parallel architectures. At first glance, it
seems not to make much sense since the modular approach discussed in the previous
chapter is readily available for parallelization. However, the graphics hardware imposes
additional requirements on the algorithms to be realized. Particularly, such algorithms
must exhibit a high homogeneity of computations to enable data-level parallelism that
can be usefully exploited on the GPU. The reason for this is because multiple threads
executing on the GPU cannot be taken as “full-fledged” processors: conversely, they are
optimized to perform same computations across different data elements.1 This is where
the matrix-based algorithms fit in: indeed, when a problem is expressed in terms of linear
algebra, all data dependencies are usually made explicit providing a higher degree of par-
allelism. Such a level of parallelism is not commonly exploited on the traditional parallel
platforms since it implies a close cooperation between threads (e.g., using shared mem-
ory) which, in most cases, has a negative impact on performance. In contrast, inter-thread
communications on the GPU (within one thread block) are almost negligibly cheap.

This chapter is organized as follows. First, we introduce the theory of shift-structured
matrices (or displacement structure), and outline the main algorithms operating on such
matrices. Although, we shall try to keep the discussion self-contained, it should be noted
that there is a large school of thought behind this theory, and therefore we will mostly
concentrate only on the results which are relevant to the solution of some concrete matrix
problems and skip further details. Afterwards, we will derive the matrix-based analogues
for corresponding polynomial algorithms and integrate them to the modular approach.
At the end of this chapter, we shall also revisit the resulting parallel complexity of the
modular algorithms and compare it with the results obtained in Section 2.5.

3.1 Theory of shift-structured matrices
We begin with examples of structured matrices to give the reader some intuitive feel-
ing which led to the concept of displacement structure. A comprehensive overview of
this subject along with numerous applications can be found in (KS95). The interested

1This makes the GPU execution model very similar to SIMD, yet with several differences to be identified
in Section 4.1.
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reader may also find it informative to look in (CS98, SK95, KC94a). For asymptot-
ically fast algorithms on matrices with structure including parallel solutions, we refer
to (Pan01, Rei05). Some recent advances in the theory of structured matrices are summa-
rized in (BMO+10). We also remark that, in the present discussion, we do not consider
any questions related to the numerical stability of such algorithms which is a large topic
on its own. This is because our primary goal is to develop algorithms to work over a finite
field, where these questions are irrelevant. To the best of our knowledge, we were the first
to apply structured matrix algorithms in the modular setting while, initially, these algo-
rithms were supposed to be used with inexact numeric computations as needed in many
applied fields. In effect, this required some effort to integrate square root and division-free
matrix transformations into the original approach.

Throughout this section, we suppose that the reader is familiar with the basics of linear
algebra. For arbitrary matrices A and B, A ⊕ B denotes the Kronecker sum of them. By
In we denote an identity matrix of size n × n, and 0n is a zero matrix. Sometimes we
will omit the subscripts simply writing I or 0 when the dimensions can be determined
from the context. Besides, we shall also agree that matrix elements are indexed starting
from (0, 0), to be consistent with indexing of polynomial coefficients. In other words, the
first diagonal element of an n × n matrix M will be denoted by M0,0 and the last one by
Mn−1,n−1.

3.1.1 Toeplitz, Hankel and related matrices
First, we consider Toeplitz matrices which arise in many theoretical and applied fields:
in the solution of certain differential equations, signal and image processing, polynomial
computation, Markov chains, etc. By definition, a Toeplitz matrix T is an n× n matrix for
which it holds that Ti, j = Ti−1, j−1 (i, j = 1, . . . , n − 1) or, in other words:

T =


t0 t−1 . . . t1−n

t1 t0
. . .

...
...

. . .
. . . t−1

tn−1 . . . t1 t0

 . (3.1)

Since T can be described by 2n − 1 instead of n2 parameters, it is quite natural to as-
sume that operations on T (such as multiplication by a vector, triangular factorization,
inversion) can be carried out faster than for general matrices. Next, by Z we denote the
so-called lower shift matrix of size n × n which is zeroed everywhere except for ones on
its first subdiagonal:

Z =


0 0 . . . 0

1 0
. . .

...
...

. . .
. . . 0

0 . . . 1 0

 . (3.2)

Multiplying an arbitrary matrix by Z from the left has the effect of shifting the contents of
the matrix down by one position (row). Similarly, multiplying by ZT from the right is the
same as shifting the matrix to the right by one column position. It is now straightforward
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to check that the product ZTZT and the difference R = T − ZTZT are of the following
form:

ZTZT =



0 0 . . . . . . 0
0 t0 t−1 . . . t1−n
... t1 t0

. . .
...

...
...

. . .
. . . t−1

0 tn−1 . . . t1 t0


, R =



t0 t−1 t−2 . . . t1−n

t1 0 0 . . . 0

t2 0 0
. . .

...
...

...
. . .

. . . 0
tn−1 0 . . . 0 0


.

Clearly, R contains all information to fully describe the matrix T and it has rank 2.1 Using
the fact that an n× n matrix of rank k can be decomposed as the product of n× k and k× n
matrices, we can write: R = GBT , where

GT =

[
t0/2 t1 t2 . . . tn−1

1 0 . . . . . . 0

]
, BT =

[
1 0 . . . . . . 0

t0/2 t−1 t−2 . . . t1−n

]
.

The matrices G, B will be called the generators of T as they offer a compact representation
of T via the equation:

T − ZTZT = GBT (3.3)

known as displacement equation. In fact, we can write the explicit representation of T
in terms of its generators. Indeed, giving that the lower shift matrix Z is nilpotent, i.e.,
Zn = 0, the unique solution of (3.3) must satisfy:

T =
∑n−1

i=0
ZiGBT (ZT )i. (3.4)

To see why it holds, we multiply the displacement equation by the powers of Z and ZT

from both sides, yielding a sequence of identities:

ZTZT − Z2T (ZT )2 = ZGBT ZT , . . . , Zn−1T (ZT )n−1 − ZnT (ZT )n︸     ︷︷     ︸
0

= Zn−1GBT (ZT )n−1.

Summing up these equations with the original one gives the desired result. If we write
each generator matrix as a pair of column vectors, i.e., G = (a,b) and B = (c,d), the
representation (3.4) is equivalent to:

T = L(a)LT (c) + L(b)LT (d), (3.5)

where L(x) denotes a lower-triangular Toeplitz matrix with the first column x. Accord-
ingly, the representation (3.5) implies T satisfies a displacement equation of the form (3.3).
Then, a quite striking result from (GS72) states that the inverse of T also admits a similar
representation:

T−1 = L(ã)LT (c̃) + L(b̃)LT (d̃), (3.6)

which is known as Gohberg-Semencul formula. As a consequence, T−1 must also sat-
isfy (3.3), yet for different G and B. This suggests that T and T−1 have similar structure
and there should be an “easy” way to transform one matrix to another. This will be the

1Every column of R starting from the 3rd one is a multiple of the 2nd column.

53



3 Matrix algebra and symbolic computation

central topic of discussion in the next section. Another type of a structured matrix is the
so-called Hankel matrix H which can be regarded as an “anti-diagonal” Toeplitz matrix:

H =


h0 h1 . . . hn−1

h1 h2 . .
.

hn
... . .

.
. .
. ...

hn−1 hn . . . h2n−2

 . (3.7)

To obtain a displacement equation for H, we introduce a φ-circulant matrix Zφ which is a
lower-shift matrix Z from (3.2) with an additional non-zero entry φ located at the top-right
corner (0, n − 1). Then, one can write the following equation:

Z1H − HZT = GBT , (3.8)

where G, B are again matrices of size n× 2 containing all necessary information to recon-
struct H. This becomes clear if we write (3.8) in explicit form:

hn−1 hn . . . h2n−2

h0 h1 . . . hn−1
... . .

.
. .
. ...

hn−2 hn−1 . . . h2n−3

︸                            ︷︷                            ︸
Z1H

−


0 h0 . . . hn−2

0 h1 . .
.

hn−1
...

... . .
. ...

0 hn−1 . . . h2n−3

︸                        ︷︷                        ︸
HZT

=


hn−1 hn − h0 . . . h2n−2 − hn−2

h0 0 . . . 0
...

...
...

hn−2 0 . . . 0

︸                                         ︷︷                                         ︸
GBT

.

It is then not surprising that also the inverse of a Hankel matrix has a similar displacement
representation. Alternatively, instead of Z1 we could take a lower shift matrix to arrive at
the equation ZH − HZT = GBT having the same displacement rank 2. However, in this
case the matrix H cannot be recovered from its generators G and B without additional
information.1

The idea we would like to illustrate is that there are many shift-structured matrices
which are either of standard type (Toeplitz, Hankel, Vandermonde, etc.) or combinations
thereof. Whenever a matrix can be identified with some displacement equation, its struc-
ture can be readily exploited to simplify operations on it. For example, in our case the
Sylvester matrix (see in Section 2.4) is Toeplitz-like because it is formed of two “column-
stacked” Toeplitz matrices. In the next section, we give a formal definition of a structured
matrix and discuss the algorithms for such matrices.

3.1.2 Displacement structure and generalized Schur algorithms
We should remark that the algorithms for structured matrices, or generalized Schur al-
gorithms, take slightly different forms depending on whether a matrix is Hermitian or
not.2 In this section, for expository purposes, we only consider the algorithms for Her-
mitian (symmetric) matrices, which are easier to derive, leaving the details for the non-
Hermitian case to Section 3.1.3. Besides, there are two main types of displacement equa-
tions characterized by a displacement operator: the first one is of Sylvester type as in (3.8):

1This is because the matrix H falls into the kernel of a linear operator 5Z,Z(M) = ZM − MZT .
2A Hermitian matrix is a square matrix which is equal to its own conjugate transpose. When all elements

of a matrix are real, this simply means that the matrix is symmetric.
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5F,A(M) = FM−MAT ; and the other one is of Stein type as in (3.3): 4F,A(M) = M−FMAT ,
where F and A are arbitrary matrices (usually lower-triangular). Both operators are spe-
cial cases of a more general displacement operator, see (KS95, § 7.4). In the present
discussion, we shall only consider the second one which is relevant to the problems we
are going to solve using displacement structure. Furthermore, it will be assumed that ma-
trices under consideration have real entries while, in the most general form, displacement
structure is defined for arbitrary complex matrices. This will help us avoid unnecessary
burden with complex conjugations in the derivation of algorithms.

The algorithms for structured matrices have been evolved as a far-going generalization
of the original work of Schur (Sch17) which was concerned with a quite different problem
of deciding whether a power series is analytic and bounded in the unit disc; this explains
the name – the generalized Schur algorithm. We start with the formal definition of a
structured matrix.

Definition 3.1.1. Let M ∈ Rn×n be a symmetric matrix with non-negative diagonal en-
tries. M is said to have displacement structure if it satisfies the following displacement
equation, see (KS95, § 4.3.1):

4F,F (M) := M − FMFT = GJGT , (3.9)

where F ∈ Rn×n is lower triangular, G ∈ Rn×r is a generator, and J = Ip ⊕ −Iq, with
r = p + q, is a signature matrix. Here, r is called a displacement rank of M, and p and q
is the number of strictly positive and negative eigenvalues of 4F,F(M), respectively. •

For illustration, let us consider a symmetric Toeplitz matrix T as in (3.1) with t0 > 0, t1 =

t−1, t2 = t−2, . . . , tn−1 = t1−n. This matrix is structured and satisfies the equation:

T − ZTZT = GJGT , where J = 1 ⊕ −1 =

[
1 0
0 −1

]
,

while simple computations show that:

GT =
1
√

t0

[
t0 t1 t2 . . . tn−1

0 t1 t2 . . . tn−1

]
.

Observe that the generators are not uniquely defined: indeed, if G is a generator matrix
of M, then for an arbitrary J-unitary matrix Θ ∈ Rr×r, i.e. ΘJΘT = J, GΘ is also a
valid generator for M because GΘJΘTGT = GJGT . We will later see that this property
of generators can be utilized to derive fast algorithms for structured matrices. For the
non-Hermitian case, displacement structure is defined as follows.

Definition 3.1.2. Let M ∈ Rn×n be an arbitrary non-symmetric matrix. M is said to
have displacement structure if it satisfies the following displacement equation, see (KS95,
§ 4.3.1):

4F,A (M) := M − FMAT = GBT , (3.10)

where F, A ∈ Rn×n are lower triangular, G, B ∈ Rn×r are generator matrices, and r is a
displacement rank of M. •
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Certainly, one of the most demanding operation in linear algebra is triangular factoriza-
tion, while many other matrix problems, such as computing the inverse, solving a linear
system or computing the determinant, can be easily reduced to that of matrix factorization.
Here, the central role plays the so-called Schur complement as defined below.

Definition 3.1.3. A Schur complement R of a non-singular leading submatrix M0,0 of M
is defined as:

R = M1,1 − M1,0M−1
0,0M0,1, where M =

[
M0,0 M0,1

M1,0 M1,1

]
.

•

Schur complements arise in the course of block Gaussian elimination. This can be ex-
emplified as follows: suppose we have applied a standard Gaussian elimination to zero
out the elements in the first column of the following strongly regular matrix M ∈ Rn×n (a
matrix is called strongly regular if its leading principal minors are non-zero):

M :=
[

d0 û0

l̂0 Q

]
→

[
d0 û0

0 Q̃

]
, with l̂0 ∈ R

(n−1)×1, d0 ∈ R, and û0 ∈ R
1×(n−1).

Then, it holds that Q̃ = Q − l̂0d−1
0 û0. In other words, Q̃ is a Schur complement of the

scalar d0 in matrix M. Proceeding further with Gaussian elimination, we next zero out the
elements in the first column of the submatrix Q̃ yielding a Schur complement of the 2× 2
leading block of the original matrix M, etc. Thus, denoting li = [di l̂i]T and ui = [di ûi]
in step i (0 ≤ i < n), we obtain a complete LD−1U-factorization of M in the form:

M = l0d−1
0 uT

0 +

[
0
l1

]
d−1

1

[
0
u1

]T

+

 0
0
l2

 d−1
2

 0
0
u2


T

+ · · · = LD−1U, (3.11)

where L is a lower-triangular, U is an upper-triangular and D is a diagonal matrix. Clearly,
if M is symmetric, we get an LD−1LT -factorization instead. Henceforth, we assume that
all matrices under consideration are strongly regular: this ensures that successive Schur
complements do exist or, equivalently, that Gaussian elimination can be carried out with-
out partial pivoting. In fact, the strong-regularity assumption might be dropped if we
apply the so-called look-ahead Schur algorithm instead, see (SK95), Here, non-strongly
regular steps are replaced by block Schur complementation steps. We do not consider this
algorithm here as it is quite sophisticated, and because, in the context of present work, we
will mostly be dealing with strongly-regular matrices. The next theorem is fundamental
and shows that Schur complements preserve displacement structure, thus providing us the
way how to compute the factorization of a symmetric matrix.

Theorem 3.1.1 (generalized Schur algorithm): (KS95, Lem 7.1, Lem 7.3, Thm. 7.4)
Let M ∈ Rn×n be a symmetric strongly regular matrix that satisfies a displacement equa-
tion:

M − FMFT = GJGT ,

where F, G and J are as in Definition 3.1.1. In addition, for the diagonal entries fi of F it
holds that

1 − fi f j , 0 for all i, j.
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Then, the successive Schur complements Mi of the i × i leading blocks of M are also
structured, satisfying:

Mi − FiMiFT
i = GiJGT

i , (0 ≤ i < n) ♦

where Fi is a submatrix obtained by deleting the first i rows and columns from F. Gi ∈

R(n−i)×r are generator matrices which obey the following recursive relation:[
0

Gi+1

]
=

{
Gi +

(
(Fi − fiIn−1)(In−i − fiFi)−1 − In−i

)
GiJ

gT
i gi

giJgT
i

}
Θi, (3.12)

where G0 = G, gi ∈ R
1×r is the top row of the matrix Gi, and Θi ∈ R

r×r is an arbitrary
J-unitary matrix. The triangular factorization, M = LD−1LT , is determined by

li = (In−i − fiFi)−1GiJgT
i , di =

giJgT
i

1 − f 2
i

. (3.13)

Proof The original proof can be found in (KS95). Here, we rewrite it in a more compact
form (without first showing auxiliary results) to make the argument self-contained and
(hopefully) easier to understand. It is enough to show the claim for i = 0, and the rest
follows by induction. Thus, suppose we wish to compute the generator G1 of the first
Schur complement M1 which by definition satisfies the following relation:

M̃ = M − l0d−1
0 lT

0 =

[
0 0
0 M1

]
. (3.14)

Observe that one can write the displacement equation for M separately for individual
matrix components implying that:

l0 = Fl0 f0 + GJgT
0 , d0(1 − f 2

0 ) = g0JgT
0 . (3.15)

Furthermore, since 1 − fi f j , 0, we can solve for l0 and d0 explicitly:

l0 = (I − f0F)−1GJgT
0 , d0 = g0JgT

0 /(1 − f 2
0 ), (3.16)

which proves (3.13) for i = 0. The proof of the generator recursion (3.12) proceeds by
“completion-of-squares” argument. First, we substitute M̃ to the original displacement
equation and apply (3.15):

M̃−FM̃FT = F
l0lT

0

d0
FT −

l0lT
0

d0
+ GJGT = F

l0lT
0

d0
FT −

(Fl0 f0 + GJgT
0 )(g0JGT

0 + f0lT
0 FT )

d0
+

+ GJGT = −Fl0
f0g0

d0
JGT

0 −GJ
gT

0 f0

d0
lT
0 FT + Fl0

1 − f 2
0

d0
lT
0 FT + GJ

{
J −

gT
0 g0

d0

}
JGT ,

(3.17)
where we use the fact that GJGT = GJ3GT because J2 = Ir. Our goal is to factorize the
above expression in the form G̃JG̃T . By symmetry, we seek for k0, h0 ∈ Z

r×r that fulfill
the following equations:

f0g0

d0
= −h0JkT

0 ,
gT

0 f0

d0
= −k0JhT

0 ,
1 − f 2

0

d0
= h0JhT

0 , J −
gT

0 g0

d0
= k0JkT

0 . (3.18)
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We first show that J − gT
0 g0/d0 decomposes as k0JkT

0 . Observe that k0 should be of the
form: (Ir − QJ)Θ0, where Θ0 ∈ R

r×r is an arbitrary J-unitary matrix, and Q ∈ Rr×r

is to be determined. Expanding the product k0JkT
0 , we conclude that Q must satisfy:

Q + QT − QJQT = gT
0 g0/d0. To find such Q, we write the following identity using (3.15):

gT
0 g0

d0
= gT

0 g0

(
(1 − f0)2

d0(1 − f0)2

)
= gT

0 g0

(
2(1 − f0)

d0(1 − f0)2 −
d0(1 − f 2

0 )

d2
0(1 − f0)2

)
=

2gT
0 g0

d0(1 − f0)
−

gT
0 g0JgT

0 g0

d2
0(1 − f0)2

= Q + QT − QJQT , and hence Q =
gT

0 g0

d0(1 − f0)
=

(1 + f0)gT
0 g0

g0JgT
0

.

Next, using (3.18) and (3.15), one can choose h0 as follows:

1 − f 2
0

d0
=

g0JgT
0

d2
0

= h0JhT
0 , where h0 =

g0J
d0

Θ0 =
(1 − f 2

0 )g0J

g0JgT
0

Θ0. (3.19)

It is then straightforward to verify that the remaining equations in (3.18) also hold:

h0JkT
0 =

g0J
d0

Θ0JΘT
0

{
Ir −

JgT
0 g0

d0(1 − f0)

}
=

g0

d0
−

d0(1 − f 2
0 )g0

d2
0(1 − f0)

=
( f 2

0 − f0)g0

d0(1 − f0)
= −

f0g0

d0
.

Following the proof, a sceptic reader may object that we are somehow able to “foresee”
the predefined form of expressions: this is true to some extent as we have tried to make
the argument as simple as possible skipping some intermediate steps. Finally, using the
obtained k0 and h0, we can rewrite (3.17) as

(Fl0h0J + GJk0J)J(JkT
0 JGT + JhT

0 lT
0 FT ) = G̃JG̃T .1 (3.20)

Substituting the expressions for h0 and k0 to (3.20) together with (3.16) one can write the
explicit form of G̃:

G̃ =

{
F(I − f0F)−1GJgT

0

(1 − f 2
0 )g0J2

g0JgT
0

+ GJ
(
Ir −

(1 + f0)gT
0 g0J

g0JgT
0

)
J
}

Θ0 =

=

{
G +

(
(1 − f 2

0 )F(I − f0F)−1 − (1 + f0)I
)
GJ

gT
0 g0

g0JgT
0

}
Θ0 =

=

{
G +

(
(F − f0I)(I − f0F)−1 − I

)
GJ

gT
0 g0

g0JgT
0

}
Θ0 =

[
0

G1

]
,

where the last equality follows from (3.14). Indeed, since the first row and column of M̃
are zero, the first row of G̃ must be zero too, and the whole argument follows by induction
on i.

The above theorem allows us to carry out the factorization process without explicitly con-
structing the Schur complements. Note that, it is not immediate to see that this algorithm
actually improves upon the complexity of the matrix factorization. Indeed, the generator
recursion (3.12) seems to be quite complicated, especially, as it involves computing ma-
trices of the form (In−i − fiFi)−1. However, in the vast majority of cases, the matrix F has

1Multiplying each term by J from the right is not necessary but it will help us simplify the expression.

58



3.1 Theory of shift-structured matrices

a very simple form (for instance, F = Z) such that the matrix inverse can be written with
an explicit formula or disappears altogether. In general, provided that the matrix multipli-
cation and inverse in (3.12) can be done in linear time, one demands for O(nr) elementary
operations in R in each step of the algorithm. Here, r is a displacement rank of an n × n
matrix under consideration; it usually holds that: r � n. The complete algorithm then
runs in O(n2r) arithmetic operations.

Remark that we have only considered the generalized Schur algorithm for symmet-
ric (Hermitian) matrices: a similar algorithm for the non-Hermitian case can be found
in (KS95, § 7.4.1). We do not present it here because, in the next section, we discuss the
specialization of the Schur algorithm to “array form”, where the generator recursions are
greatly simplified, both for Hermitian and non-Hermitian cases.

3.1.3 Array form of the generalized Schur algorithms
Note that, the term “array form” was introduced in (Kai87) while, in this form, the fac-
torization algorithm consists of a sequence of elementary transformations applied to an
array of matrix columns. The idea behind this algorithm is to exploit the fact that we
can choose the free parameters Θi in Theorem 3.1.1. Before discussing the algorithm, we
need to formally define what is meant by a proper form generator matrix.

Definition 3.1.4. Let G ∈ Rn×r be the generator matrix for a symmetric matrix M ∈ Rn×n

as in Definition 3.1.1. The generator is said to be in a proper form if its top row g contains
only a single non-zero element:

g = [ 0 . . . 0 δ 0 . . . 0 ]. •

The precise position of this non-zero element is yet unspecified but will be clarified later.
For non-Hermitian matrices, a proper form generator pair is defined as follows.

Definition 3.1.5. Let G, B ∈ Rn×r be a pair of generator matrices for a non-symmetric
matrix M ∈ Rn×n as in Definition 3.1.2. The generators G, B are said to be in a proper
form if their top rows, denoted g and b, respectively, contain single non-zero elements at
the same column position k:

g = [ 0 . . . 0︸   ︷︷   ︸
k

δ 0 . . . 0︸   ︷︷   ︸
r−k−1

], and b = [ 0 . . . 0︸   ︷︷   ︸
k

λ 0 . . . 0︸   ︷︷   ︸
r−k−1

].
•

Transforming the generators to a proper form can be achieved in many ways: for instance,
using elementary Givens/hyperbolic rotations or Householder reflections. We first demon-
strate this for Hermitian matrices. Suppose we wish to transform a generator G ∈ Rn×2

of a symmetric Toeplitz-like matrix to a proper form. For this, we need to find a matrix
Θ ∈ R2×2 such that ΘJΘT = J where J = 1 ⊕ −1. If g0 = [ a0 b0 ] denotes the first row
of G, then Θ is a hyperbolic rotation defined as:

Θ =

[
c −s
−s c

]
if |a0| > |b0|

(g0JgT
0 > 0), Θ =

[
s −c
−c s

]
if |a0| < |b0|

(g0JgT
0 < 0), (3.21)

where c = a0/
√
|a2

0 − b2
0|, s = b/

√
|a2

0 − b2
0|. It is easy to check that Θ is J-unitary matrix,

while g0Θ = [
√

a2
0 − b2

0 0] for |a0| > |b0|, and g0Θ = [0
√

b2
0 − a2

0] for |a0| < |b0|. Note

59



3 Matrix algebra and symbolic computation

that, the case |a0| = |b0| is excluded by strong-regularity assumption. If a generator matrix
has more than two columns, a combination of several Givens and hyperbolic rotations is
necessary to bring the matrix to a proper form, where the profile of a signature matrix
J must be taken into account, see (KS95, § 4.4.1). Sometimes rotation matrices which
involve square roots and divisions are undesirable: for instance, when these operations
are too expensive (such as in a finite field) or they are not supported at all. In this case, the
solution is to use the so-called square-root and division-free transformations. This idea
was initially developed for the classical QR-factorization of a matrix to reduce the number
of expensive arithmetic operations; see, e.g. (FL94). In application to the generalized
Schur algorithm, it works as follows. First, we write a generator matrix G ∈ Rn×2 in the
following form:

GT =

[
1/
√

la 0
0 1/

√
lb

] [
a0 a1 . . . an−1

b0 b1 . . . bn−1

]
, (3.22)

where, initially, la = lb = 1. Then, if we compute G̃ = GΘ using the rotation matrix
from (3.21) assuming |a0| > |b0|, and again factor G̃ in the form (3.22), we can rewrite the
matrix rotation without square roots and divisions, that is:[

1/
√

l′a 0
0 1/

√
l′b

]−1

G̃T = (GΘ̂)T =

[
ã0 ã1 . . . ãn−1

0 b̃1 . . . b̃n−1

]
with Θ̂ =

[
lba0 −lab0

−b0 a0

]
,

and l′a = lalb(lba2
0 − lab2

0) = lalbã0, l′b = (lba2
0 − lab2

0) = ã0. It is useful to consider a small
example here.

Example 3.1.1. Let G ∈ Z5×2 be a generator for some “Toeplitz-like” matrix:

GT =

[
3 9 −1 11 2
−7 4 7 15 −3

]
.

According to (3.21), we choose an appropriate hyperbolic rotation matrix Θ to transform
G to a proper form:

Θ = 1
2
√

10

[
−7 −3
−3 −7

]
, and (GΘ)T = 1

2
√

10

[
0 −75 −14 −122 −5

40 −55 −46 −138 15

]
.

Note that, GΘ has a zero element at (0, 0) since |3| < | − 7| in the first row of G. Now,
using square-root and division-free form, we obtain the following matrices:

Θ̃ =

[
−7 −3
−3 −7

]
, and (GΘ̃)T =

[
0 −75 −14 −122 −5

40 −55 −46 −138 15

]
,

where l′a = (−7)2 − 32 = 40 and l′b = l′a. In other words, we have simply factored out a
common denominator and stored it implicitly in the form of l′a and l′b. ♣

Suppose now G, B ∈ Rn×2 is a generator pair of a non-Hermitian matrix, and let g0 =

[ a b ], b0 = [ c d ] be the respective first rows of these matrices. We seek for a pair of
“rotation” matrices Θ,Γ ∈ R2×2 satisfying

[ a b ]Θ = [ δ 0 ], [ c d ]Γ = [ λ 0], and ΘΓT = I2, (3.23)
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where the latter condition ensures that (GΘ, BΓ) is a valid generator pair. Using the above
conditions, we find that

Θ =

[
c b
d −a

]
, Γ =

1
D

[
a d
b −c

]
, and D = ac + bd, (3.24)

whereas D , 0 is guaranteed by strong-regularity assumption introduced in Section 3.1.2.
Apparently, this is not the only way to define the rotation matrices, see (KS95, § 4.4.3)
for an in-depth discussion. When the displacement rank of a matrix under consideration
is greater than two, it becomes increasingly more difficult to find the right matrices as
the number of parameters to choose grows quadratically. In this case, it is recommended
to use Householder reflections, see (KS95, § 4.4.4). Having discussed the matrix trans-
formations, we are ready now to derive a generalized Schur algorithm in array form. As
usual we begin with a symmetric case.

Theorem 3.1.2 (array form of the generalized Schur algorithm): (KS95, Thm. 4.2)
Let M ∈ Rn×n be a symmetric strongly regular matrix that satisfies a displacement equa-
tion:

M − FMFT = GJGT ,

where F ∈ Rn×n, J ∈ Rr×r and G ∈ Rn×r are as in Theorem 3.1.1 and Definition 3.1.1,
r = p + q is the sum of p strictly positive and q strictly negative eigenvalues of GJGT .
The successive Schur complements Mi of M with respect to its leading i × i blocks are
also structured, satisfying:

Mi − FiMiFT
i = GiJGT

i . (0 ≤ i < n)

The generators Gi ∈ R
(n−i)×r can be computed using the following recurrence:[

0
Gi+1

]
= ΦiGiΘi

 0k 0 0
0 1 0
0 0 0r−k−1

 + GiΘi

 Ik 0 0
0 0 0
0 0 Ir−k−1

 , (3.25)

which should be understood as follows: “take the k-th column of the matrix GiΘi and
multiply it from the left by Φi keeping the rest columns of GiΘi intact, the resulting
matrix contains the next generator Gi+1.” Here G0 = G, Φi = (Fi − fiIn−i)(In−i − fiFi)−1,
and Θi ∈ R

r×r are J-unitary matrices chosen to annihilate all except one entry of the top
row gi of the Gi, that is:

giΘi = [ 0 . . . 0︸   ︷︷   ︸
k

δi 0 . . . 0︸   ︷︷   ︸
r−k−1

].
♦

This entry has to be in the first p positions if giJgT
i > 0 (i.e. 0 ≤ k < p), and in the

last q positions if giJgT
i < 0 (i.e. k ≥ p), by strong-regularity giJgT

i , 0. The triangular
factorization, M = LD−1LT , is determined by

li = δi(In−i − fiFi)−1GiΘiJ

 0
1
0

 , di =
Jkkδ

2
i

1 − f 2
i

, (3.26)
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Proof It should be noted that the conditions on the location of a non-zero element δi

inside gi are needed to guarantee that the proper form generator does actually exist. This
can be proven using the hyperbolic singular value decomposition, see (KS95, Lem. 4.3).
We omit these details here to keep the argument simple.

Although, this theorem admits an independent (and quite elegant) proof, we would
like to show that it can be easily derived as a consequence of Theorem 3.1.1 to outline
a deep connection between the two results. Hence, let G̃i = GiΘi and g̃i be its first row.
Since G̃i is a valid generator, we can apply the recursions (3.12) to compute Gi+1. Owing
to the special form of g̃i, one can directly see that g̃iJg̃T

i = Jkkδ
2
i , and thus

J
g̃T

i g̃i

g̃iJg̃T
i

=

 0k 0 0
0 1 0
0 0 0r−k−1

 := Ω.

Then, straightforward manipulations show that (3.12) transforms to:[
0

Gi+1

]
= G̃i + ΦiG̃iΩ − G̃iΩ,

from where (3.25) follows immediately. To arrive at (3.26), we again expand the corre-
sponding formulas for triangular factors (3.13) and use the special structure of G̃i.

As before, each step of the generator recursion (3.25) demands for O(nr) operations in R,
if we assume that matrices Φi can be computed in linear time. Then, the total complexity
of the algorithm is bounded by O(n2r) arithmetic operations.

Example 3.1.2. To exemplify how the algorithm works, we consider the factorization of
a symmetric Toeplitz matrix:

T =


9 −4 2 5 13
−4 9 −4 2 5
2 −4 9 −4 2
5 2 −4 9 −4
13 5 2 −4 9

 with
T − ZTZT = GJGT , J = 1 ⊕ −1,

GT = 1/3
[

9 −4 2 5 13
0 −4 2 5 13

]
.

In this case, the recursion (3.25) simplifies to:[
0

Gi+1

]
= ZiGiΘi

[
1 0
0 0

]
+ GiΘi

[
0 0
0 1

]
,

where Zi denotes a matrix obtained by deleting the first i rows and columns from a lower
shift matrix Z, see (3.2). Note that, G0 := G is already in a proper form, hence we
can directly obtain the next generator matrix and extract the first triangular factor (d0, l0)
according to (3.26):

GT
1 = 1

3

[
9 −4 2 5
−4 2 5 13

]
, lT

0 = G0,0

[
1 0
0 0

]
GT =

[
9 −4 2 5 13

]
, d0 = 9.

Next, we apply a hyperbolic rotation (3.21) to G1 computing G̃1 = G1Θ1 and G2:

G̃T
1 = 1

3
√

65

[
65 −28 38 97
0 2 53 137

]
, GT

2 = 1
3
√

65

[
65 −28 38
2 53 137

]
,
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while the second triangular factor taken from the first column of G̃1 is:

lT
1 = 1

9

[
65 −28 38 97

]
, d1 = 65

9 .

Continuing this process in the same manner, one obtains:

G̃T
2 = 1

√
30485

[
469 −214 244
0 389 981

]
, GT

3 = 1
√

30485

[
469 −214
389 981

]
,

lT
2 = 1

65

[
469 −214 244

]
, d2 = 469

65 ,

and finally:

G̃T
3 = 1

4
√

30954

[
1056 −7415

0 8359

]
, GT

4 = 1
4
√

30954

[
1056
8359

]
, G̃T

4 =

 0√
146605
1056

 ,
lT
3 = 1

469

[
1056 −7415

]
, d3 = 1056

469 , d4 = −146605
1056 .

.

Observe that the last generator G̃4 has a non-zero entry at the location (0, 1). The latter is
due to the fact that for G4 it holds that g4JgT

4 < 0 (or 1056 < 8359). Now, to visualize
the factorization, we can merge the diagonal elements di into one of the factors, that is,
LD−1LT → LUT :

L =



9 0 0 0 0
−4 65

9 0 0 0
2 −28

9
469
65 0 0

5 38
9

−214
65

1056
469 0

13 97
9

244
65

−7415
469

−146605
1056


, UT =



1 −4
9

2
9

5
9

13
9

0 1 −28
65

38
65

97
65

0 0 1 −214
469

244
469

0 0 0 1 −7415
1056

0 0 0 0 1


. ♣

Theorem 3.1.3 (array form of the generalized Schur algorithm 2): (KS95, Cor. 7.16)
Let M ∈ Rn×n be a non-symmetric strongly regular matrix that satisfies a displacement
equation:

M − FMAT = GBT ,

where F, A ∈ Rn×n, J ∈ Rr×r and G ∈ Rn×r are as in Definition 3.1.2. In addition, for the
diagonal entries fi, ai of F and A it holds that

1 − fia j , 0 for all i, j.

Then, the successive Schur complements Mi of M with respect to its leading i × i blocks
are also structured, satisfying:

Mi − FiMiAT
i = GiBT

i , (0 ≤ i < n)

where Fi and Ai are obtained from F and A, respectively, by deleting the first i rows and
columns. The generators Gi, Bi ∈ R

(n−i)×r can be computed using the following recur-
rences: [

0
Gi+1

]
= ΦiGiΘi

 0k 0 0
0 1 0
0 0 0r−k−1

 + GiΘi

 Ik 0 0
0 0 0
0 0 Ir−k−1

 , (3.27)
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[
0

Bi+1

]
= ΨiBiΓi

 0k 0 0
0 1 0
0 0 0r−k−1

 + BiΓi

 Ik 0 0
0 0 0
0 0 Ir−k−1

 , (3.28)

where (G0, B0) = (G, B), Φi = (Fi− fiIn−i)(In−i−aiFi)−1, and Ψi = (Ai−aiIn−i)(In−i− fiAi)−1.
Θi,Γi ∈ R

r×r are matrices satisfying ΘiΓ
T
i = Ir chosen to annihilate all except one entry of

the top rows gi and bi of Gi and Bi, respectively:

giΘi = [ 0 . . . 0︸   ︷︷   ︸
k

δi 0 . . . 0︸   ︷︷   ︸
r−k−1

], and biΓi = [ 0 . . . 0︸   ︷︷   ︸
k

λi 0 . . . 0︸   ︷︷   ︸
r−k−1

].
♦

The triangular factors of M = LD−1U are given by: di = δiλi/(1 − fiai),

li = λi(In−i − aiFi)−1GiΘi

 0
1
0

 , uT
i = δi(In−i − fiAi)−1BiΓi

 0
1
0

 . (3.29)

Proof As before, we prove the theorem by induction on i. For the first Schur complement
M1 of M we can write the following equation:

M̃ = M − l0d−1
0 u0 =

[
0 0
0 M1

]
. (3.30)

Using the displacement equation for M and the condition 1 − fia j , 0, one can write the
triangular factors in explicit form:

l0 = (I − a0F)−1GbT
0 , u0 = g0BT (I − f0AT )−1, d0 = g0bT

0 /(1 − f0a0). (3.31)

Then, we multiply the generators by rotation matrices to obtain: G̃ = GΘ0 and B̃ = BΓ0

with respective top rows g̃0 and b̃0. Given that G̃ and B̃ are in the proper form, we can
express the product GBT in the following way:

GBT = G̃B̃T =

r∑
i=1,i,k

[
0
wi

] [
0
vi

]T

+ wkvT
k = Λ + wkvT

k , (3.32)

where wi and vi are the columns of G̃ and B̃, respectively. Next, from (3.31) using (3.32)
one obtains:

l0 = λ0(I − a0F)−1wk, u0 = δ0vT
k (I − f0AT )−1, d0 = δ0λ0/(1 − f0a0), (3.33)

which shows (3.29) for i = 0. We attempt to put a displacement equation for M̃ into
“perfect square” form. Using (3.30) together with (3.32) and (3.33) yields

M̃−FM̃AT = GBT −
l0u0

d0
+ F

l0u0

d0
AT = GBT︸︷︷︸

Λ+wkvT
k

− (1 − f0a0) (I − a0F)−1wkvT
k (I − f0AT )−1︸                               ︷︷                               ︸

∆

+ (1 − f0a0)F (I − a0F)−1wkvT
k (I − f0AT )−1︸                               ︷︷                               ︸

∆

AT = Λ + (I − a0F)∆(I − f0AT )

− (1 − f0a0)∆ + (1 − f0a0)F∆AT = Λ + (F − f0I)∆(A − a0I)T = Λ + Φ0wkvT
k ΨT

0
(3.34)
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From the last equation, it is clear that M̃−FM̃AT can be factored in the form
[

0
G1

] [
0
B1

]T

as defined in (3.27) and (3.28) since

Λ = GΘ0

 Ik 0 0
0 0 0
0 0 Ir−k−1

 ΓT
0 BT , wkvT

k = GΘ0

 0k 0 0
0 1 0
0 0 0r−k−1

 ΓT
0 BT ,

and the first row and column of M̃ are zeroed everywhere. The complete argument follows
by induction on i.

Apparently, the complexity analysis used for Theorems 3.1.1 and 3.1.2 does also apply in
the asymmetric (non-Hermitian) case which implies that the complexity of the factoriza-
tion algorithm is bounded by O(n2r) arithmetic operations in R.

Example 3.1.3. We can now modify the previous example by taking an asymmetric
Toeplitz matrix instead:

T =


13 5 2 −4 9
3 13 5 2 −4
−1 3 13 5 2
−2 −1 3 13 5
8 −2 −1 3 13

 with

T − ZTZT = GBT ,

GT =

[
13 3 −1 −2 8
1 0 0 0 0

]
,

BT =

[
1 0 0 0 0
0 5 2 −4 9

]
.

The recursions (3.27) and (3.28) can be written as:[
0

Gi+1

]
= ZiGiΘi

[
1 0
0 0

]
+ GiΘi

[
0 0
0 1

]
,

[
0

Bi+1

]
= ZiBiΓi

[
1 0
0 0

]
+ BiΓi

[
0 0
0 1

]
.

For reasons of space, we shall only display the proper form generators in each step of
the algorithm. Setting (G0, B0) := (G, B) and applying the rotation formulas in (3.24) to
compute (G̃0, B̃0) = (G0Θ0, B0Γ0), one obtains:

G̃T
0 =

[
13 3 −1 −2 8
0 3 −1 −2 8

]
, B̃T

0 =
1

13

[
13 5 2 −4 9
0 −5 −2 4 −9

]
.

Then, we extract the first triangular factors (l0, u0, d0) using (3.29):

lT
0 =

[
13 3 −1 −2 8

]
, u0 =

[
13 5 2 −4 9

]
, d0 = 13.

The next generator pair (G1, B1) can be obtained simply by shifting the first columns of the
matrices G̃0 and B̃0, down by one row position, respectively. Thus, the proper generators
in the second step along with triangular factors are written as follows:

G̃T
1 = 1

7

[
7 2 −3 −3
0 13 299 −65

]
, B̃T

1 = 1
169

[
2002 767 494 −1027

0 1 −62 137

]
lT
1 = 1

13

[
154 44 −3 −66

]
, u1 = 1

7

[
154 59 38 −79

]
, d1 = 154

13 .

In the third step of the Schur algorithm, we have:

G̃T
2 = 1

1078

[
12782 3661 −308

0 −1521 9971

]
, B̃T

2 = 1
14027

[
14027 4563 5239

0 5173 −11340

]
lT
2 = 1

154

[
1826 −523 −44

]
, u2 = 1

7

[
83 27 31

]
, d2 = 83

7 .
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Carrying out this process further, we compute the remaining triangular factors (we do not
show the generator expressions as they become quite complicated):

lT
3 = 1

1826

[
20701 12430

]
, u3 = 1

1826

[
20701 9126

]
, d3 = 20701

1826 , d4 = 40634
20701 .

Again, merging the diagonal elements with a lower-triangular part, i.e., LD−1UT → L1UT ,
yields:

L1 =



1 0 0 0 0
3

13 1 0 0 0
−1
13

2
7 1 0 0

−2
13

−3
154

523
1826 1 0

8
13

−3
7

−2
83

12430
20701 1


, UT =



13 5 2 −4 9
0 154

13
59
13

38
13

−79
13

0 0 83
7

27
7

31
7

0 0 0 20701
1826

4563
913

0 0 0 0 40634
20701


. ♣

Now, we have all necessary background to derive the matrix-based analogues for the
required polynomial algorithms. But before doing this, we would like to introduce some
useful methods illustrating how to apply the algorithms given in this and the previous
section to the solution of various structured matrix problems. This should also help the
reader gain a deeper insight into the nature of matrix computations.

3.1.4 Developing algorithms for structured matrices
In this section, we tried to collect a number of techniques showing that the family of
Schur algorithms is indeed a very powerful and flexible tool which can provide a general
solution to the diversity of matrix problems. Many of these and other techniques are high-
lighted in (KS95, Pan01). The key idea behind them is that each step of the factorization
algorithm can be written in a matrix notation using Schur complements such that we can
always form a “composite” matrix whose Schur complement, after a certain number of
steps, gives precisely the result we wish to compute. In what follows, our central object of
manipulations will be a non-Hermitian strongly-regular matrix M ∈ Rn×n with a displace-
ment equation: M − FMAT = GBT with G, B ∈ Rn×r. However, the considerations below
apply on an equal basis to symmetric matrices by changing the displacement equation
accordingly.

Simultaneous factorization of a matrix and its inverse. Suppose, our goal is to compute the
triangular factors of M and M−1. To achieve this, we construct the following embedding
W ∈ R2n×2n of M:

W =

[
−M In

In 0

]
, such that W − F̂WÂT = ĜB̂T ,

where F̂ = F ⊕ Zn and Â = A ⊕ Zn. We remark that, W can have a slightly higher
displacement rank than M but it is still much lower than the full rank of M. For instance,
it is known that if M is a Toeplitz-like matrix, then the displacement rank of W cannot
exceed 4, see (KC94b). After running n steps of the Schur recursion, we obtain the partial
triangularization of the form:[

−M In

In 0

]
=

[
L1

L2

]
D−1

[
U1 U2

]
+

[
0 0
0 M−1

]
,
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where the second (matrix) term on the right-hand side is the Schur complement of sub-
matrix −M in W. Equating the terms on both sides, implies that

−M = L1D−1U1, I = L2D−1U1, I = L1D−1U2,

and therefore −M−1 = L2D−1U2 where L2 and UT
2 are necessarily upper triangular be-

cause W is banded. Note that the triangular factors L2 and U2 are given implicitly in the
form of matrix generators (Ĝ, B̂).

Solving a linear system of equations. Now, assume that we aim at solving the following
linear system: Mx = b, where b ∈ Rn×1. To accomplish this, we could, of course, compute
the triangular factorization of M, and then use back-substitution. Yet, we can do better
by exploiting the properties of Schur complements. Similarly to the previous case, we
construct an auxiliary matrix W which is now of size 2n × (n + 1):

W =

[
M −b
In 0

]
, and W − F̂WÂT = ĜB̂T ,

with F̂ = F ⊕ Zn and Â = A ⊕ 0. Then, n steps of the generalized Schur algorithm yields
the Schur complement R of the submatrix M of W which equals precisely:

R = 0 − In(−M)−1b = M−1b,

the solution of our linear system. In fact, R is simply computed as a product of generators
ĜnB̂T

n which in step n are of size n × r and 1 × r, respectively.

Orthogonal factorization. As a next example, consider the task of computing an orthogo-
nal or QR-factorization of M, where R is upper-triangular and Q is a unitary matrix. For
that, we form a symmetric matrix W ∈ R2n×2n in the following way:

W =

[
MT M MT

M 0

]
, and W − F̂WF̂T = ĜJĜT ,

where F̂ = Zn ⊕ Zn. Note that, it is usually not necessary to calculate the matrix product
MT M explicitly because the generator Ĝ can be expressed in terms of the coefficients of
M. After n steps of the factorization algorithm, we shall have the partial triangularization:[

MT M MT

M 0

]
=

[
L1

L2

]
D−1

[
LT

1 LT
2

]
+

[
0 0
0 −I

]
.

From the above equality, we conclude that:

MT M = L1D−1LT
1 , L2D−1LT

1 = M, L2D−1LT
2 = I,

which, in particular, shows that L2D−1/2 is a unitary matrix, and the QR-factorization of
M is given by:

Q = L2D−1/2, R = (L1D−1/2)T ,

where D is a diagonal matrix with positive elements (because MT M is positive-definite)
and by D1/2 we denote a diagonal matrix whose entries are the square roots of the entries
of D.
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3.2 Polynomial algorithms in matrix algebra setting
Recall that, at the end of Section 2.5 we came to conclusion that the theoretical parallel
performance of the modular GCD and resultant algorithm is restricted by the fact that the
basic subalgorithms (such as computing a GCD in Zm[x] or interpolation) in their original
forms are not readily available for parallelization. In this section, we reconsider these
subalgorithms using the displacement structure approach to enable parallel processing.

3.2.1 Resultant by factorization of Sylvester’s matrix
We begin with the derivation of the univariate resultant algorithm. This algorithm origi-
nally appeared in (Eme10c), and was later improved in (Eme10b).

Let f , g ∈ Z[x] be polynomials of degrees p and q, respectively; and S ∈ Zn×n (n =

p + q) be the associated Sylvester’s matrix. Using the theory from the previous sections,
we can write a displacement equation for S whose displacement rank is 2:

S T − FS T AT = GBT , 1 where F = Zn, A = Zq ⊕ Zp, (3.35)

and by Zn we denote a lower shift matrix of size n × n. The corresponding generators
G, B ∈ Zn×2 can be easily expressed in terms of the coefficients of f and g:

GT =

[
fp fp−1 . . . f0 0 . . . 0
gq qq−1 . . . g0 0 . . . 0

]
︸                                    ︷︷                                    ︸

n=p+q

,
B ≡ 0, except for
B0,0 = Bq,1 = 1. (3.36)

Note that, it is not the only possible way to write a displacement equation for S : we could
also use a classical “Toeplitz” displacement operator ∆Z,ZT (see Section 3.1.2) to obtain
generators of the same size. However, the equation (3.35) leads to simpler generator
expressions, and hence to a slightly more efficient final algorithm. In general, there is
no universal procedure to find an optimal displacement equation for a concrete matrix
problem at hand. This process is largely based on the “intuitive” reasoning and the ability
to “foresee” the final generator recursions which lead to many forms of generalized Schur
algorithms. A good exposition for this will be given in Section 3.2.4 where we develop
an algorithm to compute the resultant cofactors (see Section 2.4.1 for definition).

For now, let us get back to the resultant computation. Our goal is to obtain the tri-
angular factorization of S . Then, by elementary properties of matrix determinants, the
resultant equals to the product of diagonal elements. For the time being, we assume that
S is strongly regular, which is of course not always the case. The techniques how to deal
with non-strong regularity will be elaborated upon in Section 4.4.2. For matrices F and A
in (3.35) the condition 1− fia j , 0 of Theorem 3.1.3 is trivially satisfied since the diagonal
entries are identically zero. Thus, for (G̃i, B̃i) = (GiΘi, BiΓi) the generator recursion can
be written in the following form (0 ≤ i < n):[

0
Gi+1

]
= FiG̃i

[
1 0
0 0

]
+ G̃i

[
0 0
0 1

]
,

[
0

Bi+1

]
= AiB̃i

[
1 0
0 0

]
+ B̃i

[
0 0
0 1

]
, (3.37)

1There is no conceptual difference in considering S or S T , both cases lead to the same result. However,
we use S T here to keep our equations consistent with the definition of Sylvester’s matrix in Section 2.4.
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Algorithm 3.1 Resultants by factoring Sylvester’s matrix
1: procedure resultant_sylvester(f : Polynomial, g : Polynomial)
2: p = deg(f), q = deg(g), n = p + q
3: f ← f/fp . convert f to monic polynomial
4: let G = (a,b), B = (c,d) . set up the generator pair as in (3.36)
5: for j = 0 to q − 1 do . “lite” iterations of the algorithm: only the column b is updated
6: for i = j + 1 to p + j do . multiply by rotation matrix
7: bi = bi − aibj
8: od
9: c2q−j = bj . update a single entry of c

10: ai+1 ← ai for ∀i = j . . . n − 2 . shift down the first column
11: od
12: la = 1, lc = 1, res = 1, lres = 1 . initialize the common denominators and resultant
13: for j = q to n − 1 do . the remaining “full” iterations: all generator columns participate
14: for i = j to n − 1 do . multiply with the rotation matrix
15: ai = la(aicj + bidj), bi = lc(aibj − biaj)
16: ci = lc(ciaj + dibj), di = la(cidj − dicj)
17: od
18: lc = lal2c , la = aj, res = res · cj, lres = lres · lc . update the denominators and the resultant
19: ai+1 ← ai, ci+1 ← ci for ∀i = j . . . n − 2 . shift down the first columns of G and B
20: od
21: return res · (fp)q/lres . compensate for monic polynomial
22: end procedure

where Gi, Bi are matrices of size (n − i) × 2, and Fi (or Ai) is obtained from F (or A) by
deleting the first i columns and rows. The matrices Θi and Γi are chosen to transform the
top rows gi and bi of Gi and Bi, respectively, to the form:

giΘi = [ δi 0 ], and biΓi = [ λi 0 ].

The relation (3.37) should be read as follows: “multiply the first column of G̃i (or B̃i)
from the left by a corresponding matrix Fi (or Ai), leaving the second column of G̃i (or
B̃i) intact.” As noted earlier, the effect of multiplying by a lower shift matrix is the same
as shifting the contents of a matrix down by one row position, hence the multiplication
by Fi or Ai does not involve any arithmetic operations.1 Moreover, by Theorem 3.1.3 the
diagonal entries di in the factorization of S can be calculated as follows: di = δiλi.

Expanding the generator recursions (3.37) we can directly arrive at the resultant al-
gorithm. Yet, recall that, the main purpose of this algorithm is to compute the resultants
in Zm[x] which constitutes the core of the modular approach. Unfortunately, the rotation
formulas (3.24) (from Section 3.1.3) used to transform the generators to a proper form
involve divisions which is highly undesirable in a finite field. To avoid this, we exploit an
idea similar to that of division-free Givens rotations described in (FL94). Namely, we can
use “external” denominators for each generator column to collect the division factors. In
other words, if the generators are expressed in the following form:

GT
i =

[
1/la 0

0 1/lb

] [
a0 a1 a2 . . .
b0 b1 b2 . . .

]
, BT

i =

[
1/lc 0

0 1/ld

] [
c0 c1 c2 . . .
d0 d1 d2 . . .

]
,

1The multiplication by A = Zq ⊕ Zp is equivalent to the multiplication by two lower-shift matrices
separately.
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then we can rewrite the rotation formulas (3.24) to compute (G̃i, B̃i) = (GiΘi, BiΓi) without
divisions:

(G̃i) j =

[
la(a jc0 + b jd0)
lb(a jb0 − b ja0)

]T

, (B̃i) j =

[
lc(c ja0 + d jb0)
ld(c jd0 − d jc0)

]T

, (3.38)

where (G̃i) j and (B̃i) j denote the j-th rows of respective matrices. Straightforward com-
putations show that the column denominators la, lb, lc and ld are pairwise equal, and thus
we can only keep two of them. These denominators can be updated in the following way:

l̃a = l̃d = la(a0c0 + b0d0), and l̃c = l̃b = lal2
c . (3.39)

Now, the resultant algorithm follows by unwinding the recursions (3.37) and using the
relations (3.38) and (3.39). The pseudocode is given by Algorithm 3.1. Some comments
are due here to gain better understanding of the algorithm. For convenience, we write the
generator matrices as a pair of column vectors: G = (a,b) and B = (c,d). In each iteration
we update the generators according to (3.38) and collect one factor of the resultant. After
n iterations (n = p + q) the generators vanish completely, and the product of collected
factors yields the resultant.

The algorithm is split in two parts: lines 5–11, where only a single column b of G
is updated; and lines 13–20 where all four columns participate in the update. In what
follows, we will refer to these parts of the algorithm as “lite” and “full” iterations, re-
spectively. This improvement is possible because, according to (3.36), the matrix B has
only two non-zero entries: c0 = dq = 1. Next, if we ensure that f is monic (that is,
a0 = fp ≡ 1), we can see from (3.24) that: D = a0c0 + b0d0 = a0 ≡ 1. Hence, it follows
that the denominators equal identically to 1 throughout the first q steps of the Schur algo-
rithm (or “lite” iterations). Substituting a0 = c0 = 1 and d0 = 0 into (3.38) leads to largely
simplified generator recursions. By the same token, the resultant factors a0c0 are unit dur-
ing “lite” iterations, and hence not need to be collected. At the end, in line 21 we multiply
the resultant by ( fp)q to compensate for monic f . Lastly, remark that, strong-regularity
assumption introduced at the beginning of this section guarantees that denominators la

and lc do not vanish in throughout the algorithm.

3.2.2 Vandermonde system and polynomial interpolation
For the task of interpolation, suppose we would like to find a polynomial f ∈ Z[x] of
degree less then n satisfying the set of equations: f (xi) = yi, for 0 ≤ i < n. As noted
in Section 2.2.3, the coefficients {ai} of f are the solutions of the following Vandermonde
system:

Va = y, with Vi j = x j
i , (0 ≤ i, j < n − 1), (3.40)

where V ∈ Zn×n is a Vandermonde matrix, and y is a column vector of the values {yi}.
To solve this linear system, we apply the techniques from Section 3.1.4 to form a matrix
W ∈ Z2n×(n+1) which contains V and the vector y as submatrices:

W =

[
V −y
In 0

]
.

After n steps, we obtain a Schur complement R of V which is: R = 0− InV−1(−y) = V−1y,
i.e., equals precisely the solution of system (3.40). The matrix W has a displacement rank
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2 and satisfies the equation:
W − FWAT = GBT , (3.41)

where A = Zn ⊕ 0 ∈ Z(n+1)×(n+1) and F = diag(x0 . . . xn−1) ⊕ Zn ∈ Z
2n×2n. Remark that

the matrix F is a composition of a diagonal and lower-shift matrix. This is due to the
special structure of a Vandermonde matrix, see (KS95, § 7.2.1) for details. The generator
matrices G ∈ Z2n×2 and B ∈ Z(n+1)×2 have the following form:

GT =

[
1 . . . 1 1 0 . . . 0

y0 . . . yn−1 0 0 . . . 0

]
,

B ≡ 0, except for
B0,0 = 1, Bn,1 = −1. (3.42)

Again, we apply Theorem 3.1.3 to derive generator recursions. The condition 1− fia j , 0
is satisfied because A has zero diagonal entries. Thus, the next generator pair (Gi+1, Bi+1)
can be found from the proper form generators (G̃i, B̃i) = (GiΘi, BiΓi) as follows (0 ≤ i <
n):[

0
Gi+1

]
= ΦiG̃i

[
1 0
0 0

]
+ G̃i

[
0 0
0 1

]
,

[
0

Bi+1

]
= ΨiB̃i

[
1 0
0 0

]
+ B̃i

[
0 0
0 1

]
, (3.43)

which should be read as: “take the first column of G̃i (or B̃i) and multiply it with Φi

(or Ψi), keeping the second column unchanged.” Here, Φi = Fi − fiIi, Ψi = Ai(Ii −

fiAi)−1, where Fi and Ai are obtained by deleting the first i rows and columns from F
and A, respectively. After n steps of the algorithm, the product GBT yields the solution
of system (3.40). Although, the equations look complicated at first glance, shortly we
will see that, in essence, it suffices to work with a single generator G because, informally
speaking, B does not carry any useful information.

Let G = (a,b), B = (c,d) be the generators as defined in (3.42), where we again asso-
ciate the matrices with column vectors. We will show that it suffices to work with a single
generator G which leads to an efficient interpolation algorithm. The key to understanding
is that, in contrast to the resultant algorithm, we are not interested in intermediate results
of the factorization, instead our goal is to obtain the final Schur complement R which
is given by the product GBT after n steps of the Schur algorithm.1 Observe that, at the
beginning B := B0 has only two non-zero entries (c0 = 1 and dn = −1) and is already in a
proper form (since d0 = 0). Using (3.43), straightforward manipulations show that:

BT
1 =

[
1 x0 x2

0 . . . xn−1
0 0

0 0 . . . 0 1

]
, BT

2 =

[
1 x1 + x0 x2

1 + x0x1 + x2
0 ∗ 0

0 0 . . . 0 ∗

]
,

where B1 ∈ Z
n×2, B2 ∈ Z

(n−1)×2, and asterisk (*) denotes unimportant entries. A crucial
observation is that the leading rows of matrices Bi (0 ≤ i < n) equal identically to [ 1 0 ]
which can be verified by expanding the respective formulas. Next, provided that only the
leading rows of G and B are needed to setup the rotation matrices in (3.24), we conclude
that B does not affect the update of the matrix G. After n steps of the Schur algorithm,
it follows that the last generator Bn has the form: Bn = [ 0 1 ],2 which implies that the
desired product GnBT

n is simply given by the second column of Gn.
1Here n denotes the number of interpolation points.
2To be precise, Bn = [ 0 1/K ], for some K ∈ Z, but in a division-free algorithm K is part of a common

denominator.
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Algorithm 3.2 Polynomial interpolation
1: procedure vandermonde_interp(x : Vector, y : Vector, n : Integer)
2: . returns the coefficients of f(x), s.t., f(xi) = yi, 0 ≤ i < n
3: let G = (a,b), lint = 1 . set up the generator matrix as in (3.42)
4: for j = 0 to n − 1 do
5: for i = j + 1 to j + n − 1 do . multiply b by rotation matrix
6: bi = biaj − aibj
7: od
8: lint = lint · aj, s = 0, t = 0 . update the denominator
9: for i = j + 1 to j + n do . multiply the column a with Φj as in (3.43) from the left

10: if (i < n) then s = ai, t = xi . consider different cases
11: elif (i > n and i ≤ j + n) then s = ai−1, t = 1 fi
12: ai = s · t − ai · xj
13: od
14: bj+n = −bj, an+j+1 = 1 . update the last non-zero entries of a and b
15: od
16: bi ← −bi/lint for ∀i = n . . . 2n − 1 . divide the coefficients by the denominator
17: return (bn . . . b2n−1) . return the coefficients of f
18: end procedure

Now, we try to simplify the recursion for the generator G. By the above observations,
we have (c0, d0) = (1, 0) throughout the whole algorithm. Then, (3.38) implies that:
ã j = la(a jc0 + b jd0) ≡ laa j. Hence, only the column vector b needs to be multiplied
by the rotation matrix, and we can omit the denominator la for the column a. Besides,
observe that only n entries of the generator G are non-zero at a time. Thus, we can use a
sort of “sliding window” approach where only n relevant entries of G get updated in each
iteration of the Schur algorithm.

The pseudocode is given in Algorithm 3.2. Here, lines 10–12 are the effect of mul-
tiplying Φ j from (3.43) by the column vector a. Note that, we use auxiliary variables s
and t to write the update of a in a “uniform” way. This is done with the intension to later
avoid excessive branching in the GPU code.1 Written in a usual form, the elements of a
are updated in iteration j according to the following rules:

ai =


ai(xi − x j), i = j + 1, . . . , n − 1
aix j, i = n
ai−1 − aix j. i = n + 1, . . . , j + n

As a last remark, observe that, the Vandermonde matrix is strongly regular as long as
interpolation points xi are pairwise distinct, hence the algorithm is guaranteed to succeed
without any additional assumptions.

3.2.3 GCD computation

To compute a GCD of univariate polynomials, we first recall a well-known result relating
a GCD with the triangularization of Sylvester’s matrix. In addition, we refer to (Eme11)
where the original algorithm was derived.

1Short conditional statements are likely to be replaced by predicated instructions to avoid branching in
the GPU code, see Section 4.1.
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Theorem 3.2.1: (Lai69) Let S be Sylvester’s matrix for polynomials f , g ∈ F[x] with
coefficients over some field F. If S is put in echelon form, using row transformations
only, then the last non-zero row gives the coefficients of gcd( f , g) ∈ F[x].

Proof Note that, a matrix is said to be in row echelon form if all non-zero rows are situated
above any rows having all zeros, and the first non-zero coefficient of a non-zero row is
always strictly to the right of the one from the row above. We reproduce the proof here
as this result plays the central role in the correctness of our GCD approach. Suppose, f
and g are polynomials of degrees p and q, respectively. From the application of Extended
Euclidean Algorithm over F (see Section 2.1.3), it follows that:

gcd( f , g) = f (x)s(x) + g(x)t(x), with deg(s) < q and deg(t) < p. (3.44)

Let S̃ denote the matrix S in a row echelon form. By Theorem 2.4.2 from Section 2.4,
if deg(gcd( f , g)) > 0, then Sylvester’s matrix S is singular and hence S̃ must necessarily
contain zero rows. We associate with each row i of S a polynomial ui(x), and with a
corresponding row i of S̃ a polynomial ei(x):

S ·


xp+q−1

...
x
1

 =


up+q−1(x)

...
u1(x)
u0(x)

 , S̃ ·


xp+q−1

...
x
1

 =



ep+q−1(x)
...

ed(x)
0
...
0


.

Because S̃ is in row echelon form, deg(ei) > deg(ei−1) for i = d + 1, . . . , p + q − 1. Let
k = deg(ed) be the degree of the last non-zero polynomial. We first show that any non-zero
u(x) ∈ F[x] which is a linear combination of ui’s, that is, u(x) =

∑p+q−1
i αiui(x) for some

αi ∈ F, has degree not less that k. This is easy to see, if we observe that u(x) also admits
the following representation: u(x) =

∑d
i βiei(x), βi ∈ F. It holds because each row of S̃ is

a linear combination of the rows of S . By construction, k is minimal among the degrees
of {ei(x)} and deg(ei) > deg(ei−1), thus all leading terms in the sum

∑d
i βiei(x) cannot be

cancelled out simultaneously, and we conclude that deg(u) ≥ k.
Now, by construction of Sylvester’s matrix, we have: u(x) = f (x)s(x)+g(x)t(x), where

deg(s) < q and deg(t) < p. This can be easily verified if we expand the polynomials ui(x)
according to definition. Apparently, ed(x) can also be written in that form which by (3.44)
implies that ed(x) is divisible by a GCD. However, as we have shown above, there are no
non-zero polynomials u(x) of degree less than k expressible in the form f (x)s(x)+g(x)t(x),
and thus ed(x) is a GCD.

The above theorem asserts that, if we triangularize Sylvester’s matrix, for instance, using
Gaussian elimination, we obtain a GCD in the last nonzero row of the triangular factor.
Assume, f , g ∈ Z[x] are polynomials of degrees p and q (p ≥ q), respectively, and S ∈
Zn×n (n = p+q) is the associated Sylvester’s matrix. To compute the factorization of S , we
could apply the generalized Schur algorithm directly. Unfortunately, it is not possible to
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handle non-strong regularity as in the case of resultants (which is discussed Section 4.4.2).
The main reason for this is because, if polynomials are not relatively prime, Sylvester’s
matrix S is singular by definition, and hence it is not possible to tell in which step of the
factorization algorithm a GCD is actually computed.

To get around this difficulty, we can triangularize the symmetric matrix W = S T S
instead and arrive at orthogonal factorization of S as we have studied in Section 3.1.4.
Indeed, if W is factored in the form: W = RT R, then R is an upper-triangular factor in the
QR-factorization of S :

W = S T S = (QR)T QR = RT QT QR = RT R, (3.45)

where: QT Q = I since Q is orthogonal. We should remark that W is not necessarily
positive-definite because S may be singular, as noted above. Yet, we can guarantee that
the Schur algorithm applied to W does not break down during the first n − k steps, where
k = deg(gcd( f , g)), since n − k leading submatrices of W are positive-definite. The matrix
W is structured satisfying the following equation:

W − ZnWZT
n = GJGT with G ∈ Zn×4, J = I2 ⊕ −I2, (3.46)

As mentioned in Section 3.1.4, it is often not necessary to compute the entries of W
explicitly since the generator G can be expressed in terms of the elements of the original
matrix which is true in our case:

GT =


fp fp−1 . . . f0 0 . . . 0
gq qq−1 . . . g0 0 . . . 0
0 . . . 0 fp fp−1 . . . f1

0 . . . 0 gq gq−1 . . . g1

︸                                ︷︷                                ︸
n=p+q

. (3.47)

To carry out the generator recursion for G, we could apply the generalized Schur algo-
rithm in array form as given by Theorem 3.1.2 in Section 3.1.3. However, keeping in mind
that our final goal is to compute a GCD in Zm[x], some complications may arise: namely,
computing proper form generators requires the construction of rotation matrices which
is not easy in a finite field. To deal with this problem, in Section 3.2.1 we have devel-
oped division-free transformations for an asymmetric generator pair. Yet, in the current
“symmetric” case, such transformations become increasingly more expensive since not
only divisions but also square-roots need to be eliminated. We could apply square-root
and division-free Givens rotations as exemplified in Section 3.1.3 but, due to the large
displacement rank of G in (3.46), it appears that using the Schur recursion in its original
form is computationally more attractive in our case. Indeed, directly using Theorem 3.1.1
from Section 3.1.2, we obtain the following generator recursion:[

0
Gi+1

]
=

{
Gi − (In−i − Zi)Gi

JgT
i gi

giJgT
i

}
Θi, (3.48)

where we trivially set Θi = I. To derive the actual GCD algorithm based on this recursion,
we proceed by defining Li = GiJgT

i in step i which, according to (3.13), is precisely the
(i+1)-th row of the triangular factor of W. Hence, the goal of our algorithm is to compute
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Algorithm 3.3 Matrix-based univariate GCD algorithm
1: procedure gcd_sylvester(f : Polynomial, g : Polynomial)
2: p = degree(f), q = degree(g), n = p + q, det = 1
3: let G = (a,b, c,d) . setup the matrix generator as in (3.47)
4: for i = 0 to q − 1 do . initial q iterations are “simplified”
5: for j = i to n − 1 do . the G’s top row: gi = {ai,bi, 0, 0}
6: Li

j = aiaj + bibj . triangular factor: Li = GiJgT
i

7: od
8: for j = i + 1 to n − 1 do . compute the next gen.: Gi+1
9: Fi

j = Li
j − Li

j−1 . matrix prod.: Fi = (In−i − Zi) · Li

10: aj = aj · Li
i − ai · Fi

j, bj = bj · Li
i − bi · Fi

j
11: od
12: det = det · Li

i . collect the denominators
13: od
14: for j = q to n − 1 do . bring to the common denom.
15: cj = cj · det,dj = dj · det
16: od . the remaining p “full” iterations:
17: for i = q to n − 1 do . the G’s top row: gi = {ai,bi, ci,di}

18: for j = i to n − 1 do . triangular factor: Li = GiJgT
i

19: Li
j = aiaj + bibj − cicj − didj

20: od
21: for j = i + 1 to n − 1 do . generator recursion: Gi+1 = Gi · Li

i − (In−i − Zi) · Li · gi
22: Fi

j = Li
j − Li

j−1 . matrix prod.: Fi = (In−i − Zi) · Li

23: aj = aj · Li
i − ai · Fi

j, bj = bj · Li
i − bi · Fi

j

24: cj = cj · Li
i − ci · Fi

j, dj = dj · Li
i − di · Fi

j
25: od
26: if (ai+1 = ci+1 and bi+1 = di+1) then . check if the columns are not linearly independent
27: return (Li

i,L
i
i+1, . . . ,L

i
n−1)/Li

i . return monic gcd
28: fi
29: od
30: return 1 . polynomials are coprime
31: end procedure

the last nonzero Li. In what follows, we will adopt the notation writing Li
j to denote

the j-th element of the i-th column of the triangular factor. To minimize the number of
finite field divisions, we can collect all divisors giJgT

i in (3.48) in a common denominator.
Moreover, it follows that: Li

i = giJgT
i , hence we do not need to compute the divisors

separately.
Unwinding the recursion (3.48), we obtain a GCD algorithm with pseudocode given

by Algorithm 3.3. Here, G is represented implicitly by four columns: G = (a,b, c,d) ∈
Zn×4. We split the algorithm in two parts: lines 4–13 where only two generator columns (a
and b) are updated; and lines 17–29 where all four columns participate. Henceforth, we
will refer to these parts of the algorithm as “lite” and “full” iterations, respectively. The
reason for this partitioning lies in the particular structure of G in (3.47) having a block of
zeros in the first q rows (p ≥ q). As a result, we can skip updating the columns c and d
throughout the first q steps of the algorithm. The purpose of the loop in lines 14–16 is to
bring the columns c and d to the common denominator with a and b before running the
“full” iterations. Finally, to detect a GCD in lines 26–31, we check if the denominator
Li+1

i+1 for the next step of the algorithm vanishes indicating that Li is the last non-zero row
of the triangular factor. Note that, there is no need for this test in the first q iterations
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by obvious reason because the degree of gcd( f , g) is not larger than the degree of either
polynomial.

3.2.4 Computing resultant cofactors
Finally, we consider the problem of computing resultant cofactors (see Section 2.4.1).
Although, strictly speaking, this seems to be unrelated to the main contribution of this
thesis, we believe that the algorithm described below may be of independent interest and
serves as a good exposition of the power and elegance of the structured matrix theory.
As a starting motivation, observe that, there is no direct approach (for instance, such as
the PRS algorithm) to computing the resultant cofactors except for the evaluation of the
whole subresultant sequence, see (BPR06, § 8.3.6). The latter operation is an order of
magnitude more difficult then the initial problem appears to be. We begin with describing
the problem in matrix terms (see also Theorem 2.4.1).

Let f , g ∈ Z[x] be polynomials of degrees p and q, respectively; and S ∈ Zn×n (n = p+

q) be the corresponding Sylvester’s matrix. By definition, the cofactors are polynomials
s(x) and t(x) of degree at most q − 1 and p − 1, respectively, which satisfy the following
equation:

s · f + t · g = res( f , g). (3.49)

By equating the coefficients of the same power of x on both sides, we can express (3.49)
in matrix form:

fp . . . 0 gq . . . 0

fp−1
. . .

... gq−1
. . .

...
...

. . . 0
...

. . . 0
f0 fp g0 gq

0
. . . fp−1 0

. . . gq−1
...

...
...

...
0 . . . f0 0 . . . g0





sq−1
...
s1

s0

tp−1
...
t1

t0


=


0
...
0

res( f , g)

 ,

which is equivalent to writing

S T · vT = [ 0 . . . 0 res( f , g) ]T ,

where v is the column vector of coefficients of s(x) and t(x). From the last equation, it
is easy to see that the cofactors can be obtained from the last column of S −T multiplied
by the resultant res( f , g). To compute S −T , we consult Section 3.1.4 for the techniques
on computing a matrix inverse. We proceed by constructing a matrix W ∈ Z2n×(n+1) as
follows:

W =

[
S T −b
In 0

]
, such that W − FWAT = GBT ,

with F = Zn ⊕ Zn, A = Zq ⊕ Zp ⊕ 0, and b = [ 0 . . . 0 1 ]. Using W, the last column of
S −T can be computed in n steps of the generalized Schur algorithm. Indeed, the nth Schur
complement of W equals: 0 − InS −T (−b).
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Next, remark that we do not know res( f , g) in advance (needed to scale the last col-
umn of S −T ) but it can be computed simultaneously during the triangularization of W. The
main disadvantage of this approach, however, is that W has displacement rank 3 which is
by 1 higher than that of Sylvester’s matrix. Carrying out the Schur recursion for asymmet-
ric rank-3 generators is significantly more difficult since, in each step, we need to operate
on 6 (!) matrix columns instead of 4. The intuition suggests that there should be an easier
solution: after all, we only need to compute the single column of S −T . Remarkably, we
can slightly modify the displacement equation to lower the displacement rank. For that,
we introduce a matrix Σ = In ⊕ 0 to zero out a single position in W, so that W has now
displacement rank 2 with respect to the following equation:

WΣ − FWAT = GBT , (3.50)

while the generators G ∈ Z2n×2 and B ∈ Z(n+1)×2 are easily expressible in terms of the
coefficients of f and g:

GT =

[
fp fp−1 . . . f0

q−1︷  ︸︸  ︷
0 . . . 0 1

n−1︷  ︸︸  ︷
0 . . . 0

]
gq qq−1 . . . g0 0 . . . 0︸   ︷︷   ︸

n−1

1 0 . . . 0︸  ︷︷  ︸
p−1

B ≡ 0 except
B0,0 = Bq,1 = 1. (3.51)

Observe that, in (3.50) we use a displacement operator of a more general form but, in fact,
this makes the generator recursions only slightly more complicated, see (KS95, § 7.4.2).
Denoting by (G̃i, B̃i) = (GiΘi, BiΓi) the proper form generators in step i of the algorithm
(0 ≤ i < n), the next generator pair (Gi+1, Bi+1) fulfills the following recurrence (cf. Theo-
rem 3.1.3):[

0
Gi+1

]
= ΦiG̃i

[
1 0
0 0

]
+ G̃i

[
0 0
0 1

]
,

[
0

Bi+1

]
= ΨiB̃i

[
1 0
0 0

]
+ B̃i

[
0 0
0 1

]
, (3.52)

where Φi = Fi, Ψi = AiΣ
−1
i and Fi, Ai, Σi are obtained from the corresponding matrices

by deleting the first i rows and columns. However, one can immediately see the flaw in
the above relations: namely, the matrix Σi is singular, and thus Ψi cannot be computed. In
terms of displacements, this means that it is not possible to recover the matrix W from its
generators completely. To be precise, we cannot solve uniquely for the upper-triangular
factors ui which, by (3.50), must satisfy:

uiΣi − fiuiAT
i = giBT

i , (3.53)

where gi is the leading row of Gi in step i of the algorithm. Since fi ≡ 0 and Σi = In−i ⊕ 0,
it appears that the last entry of each ui cannot be determined from this relation. However,
one of remarkable features of the generalized Schur algorithm is that it enables us to carry
out a generator recursion even in such “deficient” cases provided that we can somehow
“guess” the missing information. We next show how to do this. Running n steps of the
factorization algorithm yields the following matrix identity:[

S T −b
I 0

]
=

[
L1

L2

]
D−1

[
U1 U2

]
+

[
0 0
0 S −T b

]
,
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Algorithm 3.4 Computing resultant cofactors from Sylvester’s matrix
1: procedure resultant_cofactors(f : Polynomial, g : Polynomial)
2: p = deg(f), q = deg(g), n = p + q
3: f ← f/fp . convert f to monic polynomial
4: let G = (a,b), B = (c,d) . set up the generators as in (3.51)
5: for j = 0 to q − 1 do . “lite” iterations: only the column b is updated
6: for i = j + 1 to p + j do . multiply by rotation matrix
7: bi = bi − aibj
8: od
9: bn+j = −bj, cq = bj . update the single elements of b and c

10: ai+1 ← ai for ∀i = j . . . p + j . multiply a by F = Zn ⊕ Zn from the left
11: an = 0
12: ci+1 ← ci for ∀i = j . . . q + j . multiply c by A = Zq ⊕ Zp ⊕ 0 from the left
13: cq = 0, cn = 0
14: od
15: aq+n = 1, res = 1 . initialize the remaining entry of a and the resultant
16: for j = q to n − 1 do . “full” iterations: both generator matrices transformed
17: det = ajcj + bjdj . calculate the denominator from (3.24)
18: for i = j to 2n − 1 do . transform G to a proper form:
19: ai = aicj + bidj, bi = aibj − biaj
20: if (j mod 2 = 0) then ai = ai/det, bi = bi/det fi . normalize the coefficients of G
21: od
22: for i = j to n − 1 do . transform B to a proper form:
23: ci = ciaj + dibj, di = cidj − dicj
24: if (j mod 2 = 1) then ci = ci/det, di = di/det fi . normalize the coefficients of B
25: od
26: res = res · aj · cj . update the resultant
27: if (j = n − 1) then
28: res = res · (fp)q . compute the actual resultant
29: s← {an, . . . , an+q−1} · res/(an−1 · fp) . scale coefficients of the cofactor s
30: t← {an+q, . . . , a2n−1} · res/an−1 . scale coefficients of the cofactor t
31: return (s, t) . return the cofactors
32: fi
33: ai+1 ← ai for ∀i = j . . . n + j . multiply a by F = Zn ⊕ Zn from the left
34: an = 0
35: ci+1 ← ci for ∀i = j . . . n − 2 . multiply c by A = Zq ⊕ Zp ⊕ 0 from the left
36: cq = 0, cn = 0
37: od
38: end procedure

where the matrices L1, L2 and U1 are of size n × n while U2 is n × 1. Observe that, U2

contains precisely those searched-for last elements of each ui. By equating the matrices
on both sides, we conclude that:

−b = L1D−1U2.

Here the matrix L1D−1 has unit diagonal elements which follows directly from the factor-
ization formula (3.11) in Section 3.1.2. If we expand the above equation, it can be shown
by induction that U2 = −b, and hence we can recover ui in (3.53) completely without the
need for inverting Σi. As a result, we can simply take Ψi = Ai in (3.52) to compute the
next generator Bi+1. The reason for this is because the matrix Ψi essentially comes from
the upper-triangular factor ui, if we recall the proof of Theorem 3.1.3; see also (KS95,
Cor. 7.16).
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For expository purposes, in the pseudocode we shall use the classical rotation for-
mulas (3.24) from Section 3.1.3 to update the matrix generators leaving the reader an
opportunity to work out the details of the division-free version (this can be done in ex-
actly the same manner as for resultants). Another motivation for choosing the classical
formulas stems from the fact that the cofactors are usually very large expressions and it is
often not needed to compute them exactly. In this sense, the rotation formulas (3.24) are
more preferable as they can be used with multi-precision arithmetic (such as BigFloat)
without overflow concerns while division-free rotations are only applicable in a finite
field. The algorithm’s pseudocode is given by Algorithm 3.4. It has a lot in common
with the resultant algorithm previously discussed: the main difference is that the genera-
tor matrices G = (a,b) and B = (c,d) are now of size 2n × 2 and (n + 1) × 2, respectively.
That is why, we skip the detailed description of the algorithm referring to the comments
in Section 3.2.1, and concentrate only on the important parts.

The algorithm is again split in two parts: lines 5–14, where only a single column of
G is updated, and lines 16–37, where both generator matrices are modified in each step.
Remark that, in lines 18–25 we use the rotation formulas involving divisions. In effect,
there are many ways to update the generator matrices: here we divide the columns of G
or B in turns (line 20 for even j’s and line 24 for odd j’s) by the denominator to keep the
magnitudes of the generator columns comparable. Notice also that, multiplication of the
columns a and c by the matrices A and F in lines 10–13 and 33–34 takes a slightly different
form since each of them is now composed of a pair of lower-shift matrices. The cofactors
are extracted during the last iteration in lines 27–32. By the displacement equation, the
last column of S −T is expressed as GnBT

n – the product of the generators in step n of the
algorithm. However, since the matrix Bn is of the form [ 1 0 ], we simply take the first
column a of G and scale it by the resultant to obtain the cofactors. The cofactor s is also
divided by the leading coefficient fp in line 29 to compensate for the monic form of f .

At this point, we conclude our discussion of matrix algorithms. To sum up, we have seen
that many computer algebra problems can be solved in a very elegant way using matrix
algebra methods. Besides, at the price of a small computational overhead (which does not
change the overall complexity) we obtain neatly structured algorithms readily available
for parallelization. In the next section, we briefly review a parallel complexity of the
modular GCD and resultant algorithms when their relevant parts are replaced with the
matrix-based analogues.

3.3 Complexity of modular algorithms revisited
Complexity bounds derived in this section shall provide us with a good measure for paral-
lel performance that can potentially be achieved on the graphics card. Eventually, in Sec-
tions 4.4.4 and 4.5.5 we will see that the performance measured through benchmarking
agrees with asymptotic behaviour of the algorithms. This should also justify the correct-
ness our implementation.

Before going to the main topic of discussion, we should remark that the complexity of
matrix subalgorithms presented in Section 3.2 is bounded by O(n2) arithmetic operations.
It is trivial to see since all four algorithms considered above (Algorithms 3.1, 3.2, 3.3
and 3.4) contain two nested loops where the number of iterations of each loop is at most n.
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Moreover, because of a highly structured way of computations, we can easily “vectorize”
the inner loops of these algorithms. Indeed, each row of a generator matrix (G or B) can
be updated independently in each iteration leading to OP(n, n) parallel complexity. What
concerns Chinese remaindering, observe that, we can adapt the Mixed-radix (MR) con-
version algorithm (Algorithm 2.4 from Section 2.2.2). From its pseudocode, it is clear that
O(n) MR digits can be computed in a linear parallel time using n processors as well.1 It is
then remains to recover the actual integer value from MR digits by evaluating the Horner’s
scheme. We discuss the complexity of this step in Section 3.3.1. Certainly, to implement
such parallel algorithms, a target platform should support a very fine-grained parallelism
because threads need to work in a close cooperation to compute the result. Traditional
parallel platforms are usually not considered here because inter-thread communications
would have a significant impact on the performance. Yet, assuming the PRAM model,
which provides a good approximation of the GPU (see Section 2.5.1), we can neglect the
communication overhead, and, keeping that in mind, improve the parallel complexity of
the modular algorithms.

3.3.1 GCD algorithm

First, we revisit the complexity analysis of the GCD algorithm from Section 2.3.2. We
shall try to keep the discussion concise because the main details have been already worked
out in Section 2.5.3. Again, we concentrate on a bivariate case only. Suppose f , g ∈
Z[x, y] are polynomials of degree at most n in each variable with scalar coefficients
bounded by 2τ, τ ∈ N; and let f̂ , ĝ ∈ Zm[x, y] be their homomorphic images modulo
m, respectively.

For Algorithm 2.7 computing a GCD of f̂ and ĝ, we now use O(n2) processors be-
cause the univariate GCD algorithm (Algorithm 3.3) can benefit from parallel processing.
Extracting the primitive parts of f̂ and ĝ as in (2.18) requires

TB(F̂ ← f̂ / cont( f̂ )) = TB(Ĝ ← ĝ/ cont(ĝ)) = OP(n, n2) (3.54)

parallel times as it is equivalent to computing O(n) univariate GCDs in Zm each of which
can be computed in parallel. Next, applying the evaluation homomorphism, cf. (2.20),
costs

TB(F̃ ← φy−α(F̂)) = TB(G̃ ← φy−α(Ĝ)) = OP(n, n) (3.55)

because we can evaluate each coefficient of f̃ and g̃ (considered as polynomials in Zm[y])
in linear time. The parallel complexity of the univariate GCD algorithm also becomes

TB(H̃ ← gcd_sylvester(F̃, G̃,m)) = OP(n, n). (3.56)

Thus, the inner loop of the algorithm gcd_mod takesOP(n, n2) sinceO(n) evaluation points
can be processed in parallel. Finally, interpolation from O(n) values using Algorithm 3.2
(for each coefficient in parallel) does not worsen the overall complexity:

TB(H ← vandermonde_interp({α}, {H̃})) = OP(n, n2). (3.57)

1We assume that the modular inverses ci in Algorithm 2.4 can be precomputed in advance.
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Certainly, the complexity of the remaining operations also falls within this bound, and
hence

TB(gcd_mod( f̂ , ĝ ∈ Zm[x, y])) = OP(n, n2). (3.58)

We next turn to the complexity of Algorithm 2.6. In this case, we can use N × n2 proces-
sors, where N = O(n2 + τ), the number of primes used by the algorithm, cf. (2.26). So
that, we are able to process each homomorphic image in parallel. Primitive parts of f and
g, cf. (2.25), can be computed in

TB(F ← f / cont( f )) = TB(G ← g/ cont(g)) = OP(τ2, n2) (3.59)

parallel time because it amount to computing n2 integer GCDs (at most) and the same
number of divisions. Modular reduction for each prime (2.27) costs

TB(F̃ ← φm(F)) = TB(G̃ ← φm(G)) = OP(τ, n2), (3.60)

arithmetic operations since we reduce each coefficient independently. Invocation of gcd_mod
requires OP(n, n2) parallel time, and the cost of the remaining operations in the inner loop
is negligible. In total, by running the algorithm for each modulus in parallel, one can
achieve the complexity of OP(n + τ,Nn2) bit operations. What concerns Chinese remain-
dering, we can recover the MR digits {γ} for each coefficient of a GCD H̃ using

TB({γ} ← mrc_algorithm({m}, {H̃})) = OP(N,Nn2) (3.61)

field operations. Next, it remains to evaluate a Horner’s scheme of MR digits to obtain
the actual large integers (see Section 2.2.2). This can be done in log N steps using N
processors if we perform the computations in a “tree-like” fashion. To obtain the bit
complexity, observe that, in step i (i = 1, . . . , dlog N/2e) each processor has to multiply
two numbers of bit-size 2i, while the number of working processors halves in each step.
Therefore, we can use spare processors to speed-up the multiplication. Indeed, a pair τ-bit
numbers can be multiplied in OP(τ, τ) time if we parallelize school-book multiplication
method in a straightforward way. That is why, step i has the bit complexity of OP(2i,N).
Summing up the complexity of all steps yields∑log N

i=1
2i = O(N)

bit operations per processor. Altogether, the cost of Chinese remaindering evaluates to
OP(N,Nn2) bit operations since we compute a Horner’s scheme for each of O(n2) GCD
coefficients in parallel. Computing a primitive part of a GCD as in (2.30) demands for

TB(Q← pp(H)) = OP(τ2, n2) (3.62)

bit operations. The total bit complexity of the modular GCD then becomes

TB(gcd_int( f , g ∈ Z[x, y])) = OP(N,Nn2) + OP(τ2, n2) = OP(n2 + τ2, n2(n2 + τ)). (3.63)

Comparing this bound to (2.35) in Section 2.5.3, we see a significant improvement in
terms of bit operations per processor. Important observation is that the resulting complex-
ity is linear in the number of primes N which, certainly, also holds in the univariate case
and agrees with the experimental results as we observe in Section 4.5.5.
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3.3.2 Resultant algorithm
For the complexity of the serial algorithm, we refer to Section 2.5.4. Again, we shall
emphasize only on the important points, skipping many secondary details. We begin
with the subalgorithm res_mod (Algorithm 2.10) computing the resultant of polynomials
f̂ , ĝ ∈ Zm[x, y] in a finite field. Evaluating the polynomials at x = α has a cost of

TB(F̃ ← φx−α( f̂ )) = TB(G̃ ← φx−α(ĝ)) = OP(n, n), (3.64)

operations in Zm since we can evaluate each coefficient of f̂ , ĝ ∈ Zm[x, y] in parallel.
Next, we apply Algorithm 3.1 to compute the resultant over Zm having the same parallel
complexity:

TB(R̃← resultant_sylvester( f̃ , g̃,m)) = OP(n, n). (3.65)

Note that, the number of evaluation points is bounded by O(n2), cf. (2.36). Therefore, if
we were to use n3 processors, the main loop of res_modwould run in a linear parallel time
(this is what is done in the actual realization). Unfortunately, the final complexity of the
algorithm would still be determined by the cost of interpolation, and hence we suggest to
use n2 processors for the analysis. Indeed, to recover the resultant polynomial from O(n2)
values using Algorithm 3.2, one needs

TB(H ← vandermonde_interp({α}, {H̃})) = OP(n2, n2). (3.66)

operations in Zm. Hence, the parallel complexity of res_mod is bounded by

TB(res_mod( f̂ , ĝ ∈ Zm[x, y])) = OP(n2, n2). (3.67)

For Algorithm 2.10, computing the resultant of f , g ∈ Z[x, y], we use N × n2 processors
where N = O(n(τ + log n)), see (2.41). The modular reduction (2.42) and invocation of
the procedure res_mod (2.40) then takes OP(n2 + τ,Nn2) parallel time since we perform
the computations modulo each prime in parallel. To recover integer coefficients of the
resultant, we again use the MRC algorithm computing a set of digits {γ} which demands
for

TB({γ} ← mrc_algorithm({m}, {R̃})) = OP(N,Nn2) (3.68)

operations. Referring to the discussion in Section 3.3.1, the actual integers can also be
computed in OP(N,Nn2) parallel time. Thus, the resulting parallel complexity of the
algorithm res_6int is

TB(res_int( f , g ∈ Z[x, y])) = OP(n(n + τ), n3(τ + log n)). (3.69)

As one can see, this bound is substantially better than the one given in (2.45). In addi-
tion, observe that, the attained complexity is quadratic in the degree and linear in the
coefficient bitlength which is well observed in the experiments, see Section 4.4.4.

In this chapter, we have discussed the theory of displacement structure and derived the
matrix-based algorithms providing a necessary background for efficient GPU realization.
Theoretical considerations shows that these algorithms enable us to improve the paral-
lel complexity of the resultant and GCD computations within the context of the PRAM
model. This, in essence, is achieved by exploiting data-level (or fine-grained) parallelism
inherent to the matrix computations. In the next chapter, we discuss the main realization
details of GPU algorithms to show the feasibility of our approach in practice.
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4 Realization and experiments

In the past two chapters, we have considered the algorithms for symbolic computations
from the theoretical perspective. However, no matter how elegant a mathematical theory
is, there is always a certain amount of disparity between theory and practice when it
comes to the realization of the algorithms on a concrete platform. This is, in particular,
true if the specifics of the target platform do not allow us to easily estimate how good
an algorithm would perform in practice. As a result, there is always a trial-and-error
component in the actual development process. For example, there are many parameters
governing the performance of an algorithm running on the GPU which are not possible
to account for during the initial design phase. This, in effect, may sometimes lead to
controversial results.

This chapter is devoted to the main aspects of the realization of the symbolic algo-
rithms on the graphics card. We begin with an introduction to the architecture of graphics
processing units and CUDA framework. Then, we go through a number of code examples
to illustrate some practical ways of writing an efficient GPU code. The readers, not famil-
iar with the graphics accelerators, may also find this helpful to gain a better understanding
of the principles of GPU programming. We next turn to the implementation of the modu-
lar resultant and GCD algorithms. Although, we shall try to keep the discussion relatively
high-level, it will sometimes be necessary to consider the actual thread execution level:
particularly, when taking about the time-critical subalgorithms. In conclusion, we run the
set of benchmarks to compare our algorithms with CPU-based analogues to demonstrate
the efficiency of parallel processing.

4.1 General purpose computing on GPUs

In this overview, we describe the principles of general purpose computing on graphics
processors or, in other words, how the modern GPUs can be utilized for the tasks not
necessarily related to computer graphics. Despite the fact that, we primarily focus on the
graphics cards supporting CUDA framework (CUD10) promoted by NVIDIA, the main
ideas and principles formulated are common to other GPU architectures as well. Besides,
with the release of a new standard for heterogeneous programming OpenCL (Mun08),
there is a tendency among the hardware manufacturers in many-core field to unify their
architectures providing better support for OpenCL, while, in essence, CUDA bears a lot
in common with OpenCL. We start by looking at the main hardware features of the GPU.
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Figure 4.1: Architecture of a Fermi based GPU comprising 16 MPs (left); Streaming Multiprocessor (MP)
with 32 CUDA cores (right)

4.1.1 GPU architecture

Commodity graphics hardware has evolved tremendously over the past decades starting
from plain accelerators for basic polygon rendering to fully-programmable processors
with outstanding computational power. With the emergence of shader programming, used
to customize a (previously) fixed-function graphics pipeline, the developers have realized
how to utilize the GPU to solve many complex problems in a more efficient way than
on a CPU. However, the shader programming model was far from optimal since prob-
lems needed to be carefully translated into unnatural graphics-oriented environment. The
situation has changed with the release of NVIDIA Tesla GPUs (LNOM08) supporting
CUDA framework. Tesla design featured a “unified shader architecture” where the ver-
tex and fragment processors are unified in the so-called Streaming Multiprocessors or
MPs capable of running shader programs as well as general purpose parallel programs.
In its turn, CUDA programming model provided a sufficient level of abstraction from the
graphics hardware which simplified the design and implementation of parallel algorithms.
The next generation GPU architecture, Fermi (Fer10), essentially followed the same uni-
fied approach as Tesla did but improved upon a number of important points. Below, we
consider the latter architecture in greater detail.

The architecture of a Fermi based GPU with 16 Multiprocessors arranged around a
block of common L2 cache is shown in Figure 4.1. As one can see, the most of the
die area of the GPU goes into the actual data processing rather than a sophisticated flow
control or caching. This illustrates a fundamental difference between CPUs and graphics
processors where the latter ones are oriented to computationally intensive tasks. Each
Multiprocessor includes 32 CUDA cores (scalar in-order processors), 16 load/store units
(LD/ST) to handle memory operations, 4 special-function units (SFUs) for transcendental
math, a 32K-word register file and 64 Kb of shared memory configurable as L1 cache.
On the GPU, threads are scheduled for execution in groups of 32 threads called warps.
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Figure 4.2: Scheduling warps for execution on the Multiprocessor (left); CUDA programming model, thread
and memory hierarchy (right)

Threads of a warp always execute synchronously: in other words the same instruction
is issued for the whole warp at a time. In this sense, the GPU can be regarded as 32-
lane SIMD vector processor. Usual arithmetic operations, including addition/subtraction,
bit operations, as well as integer and single-precision floating-point multiply and fused
multiply-add (FMA), can be scheduled for execution on CUDA cores in every clock cy-
cle.1 Double-precision arithmetic operations can be scheduled for execution in every two
clock periods which is 8x faster than on Tesla GPUs. Each MP has two warp sched-
ules and instruction dispatch units (see Figure 4.1) allowing two warps to be executed
simultaneously on an MP. Altogether, it takes two clock cycles to dispatch and execute an
instruction for a warp since each warp is processed by an execution block consisting of
16 cores. The warp schedulers issue instructions for a pair of active warps that are ready
to execute (no register dependencies, not waiting on synchronization point or memory
access). That is why, any memory latencies or read-after-write hazards can be effectively
hidden as long as there are enough active warps on an MP (in other words, by exploiting
instruction level parallelism). Dual warp scheduling is shown in Figure 4.2 (left).

Since threads of a warp cannot physically execute different instructions at a time,
when the warp encounters a data-dependent branch condition, all taken branch paths have
to be processed serially until threads “converge” back to a single execution path. This
problem, known as thread divergence, can bring a noticeable overhead in computations
when a branch condition occurs in a time-critical section of the code. Different warps can
execute disjoint paths without penalties. Such a model of execution is called SIMT (Single
Instruction Multiple Thread), and it allows programmers to write thread-level parallel

1It should be understood that the actual execution of an instruction can take about 22 clock cycles
depending on the complexity. Yet, this latency is completely hidden as long as an MP has enough warps to
execute.
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code without regard to the underlying vector organization. At the same time, whenever
performance becomes a critical factor, grouping threads into warps can be taken into
account to attain the full efficiency. Besides, to reduce the impact of thread divergence,
all instructions on the GPU support hardware predication which enables short conditional
statements to be executed without branching. Namely, if a predicate evaluates to ‘false’
for some threads of a warp, then the results of executing an instruction will not be written
for these threads: i.e., this instruction will be treated as ‘no operation’. For threads with
‘true’ predicate, execution proceeds in a normal way.

4.1.2 CUDA framework

CUDA (CUD10) is a heterogeneous serial-parallel programming model, meaning that a
serial execution on the host machine (CPU) is interleaved with a parallel execution on the
device (GPU). A program running on the GPU across a large number of parallel threads
is referred to as kernel in CUDA terminology. Kernels are written in the C language ex-
tended with additional keywords to express parallelism. At the highest level, multiple
threads running on the GPU are grouped in a grid of thread blocks which is launched
on a single CUDA kernel. Each block can contain up to 1024 threads.1 Block and grid
configuration for each kernel call are set by the user, see Figure 4.2 (right). As noted
earlier, a minimal scheduling entity on the GPU is a warp. All warps of a thread block are
assigned for execution to a single Multiprocessor. Threads in a block can communicate
via MP’s shared memory and synchronize with barriers. Different thread blocks execute
independent from each other and cannot exchange data during a kernel launch. It is only
possible to pass data from one block to another between the kernel calls using off-chip
global memory. Thread block independence is one of the cornerstones of the GPU archi-
tecture which enables a binary program to run unchanged on the devices with any number
of physical Multiprocessors (and, thereby, achieving transparent scalability).

With regard to memory organization, CUDA introduces 6 memory spaces illustrated
in Figure 4.2 (right). Register and local memory constitute a thread’s private memory
storage. Registers of an MP are statically allocated to threads of a block at the beginning
of a kernel call.2 Note that, registers is a scarce resource and should be used cleverly to
prevent register spilling. Local memory resides in an external DRAM and is typically
used by the compiler for per-thread large temporary data and register spills. Shared mem-
ory is an on-chip memory which enables inter-thread communication within a block and
has the same lifetime as the block. Shared memory is organized in 32 banks (or 16 banks
on Tesla GPUs) to facilitate concurrent access. Consecutive addresses are mapped to dif-
ferent banks. If threads of a warp (or threads of a half-warp on Tesla) access memory
from different banks at the same time, the corresponding requests can be serviced simul-
taneously. Otherwise, if two or more addresses fall into the same bank, a bank conflict
occurs and the memory requests are serialized resulting in as many conflict-free requests
as necessary. Each MP has a total of 64 Kb shared memory that is partly used as L1 cache
(depending on the user configuration). The remaining three memory spaces, including
global, texture and constant memory, are the parts of GPU’s external memory (same as

1On previous generation Tesla GPUs, the maximum block size was limited to 512 threads.
2Due to static register allocation, the context switching between warps induces no overhead.

86



4.1 General purpose computing on GPUs

local memory). They are visible to the entire grid of thread blocks and have the life-time
of an application.

Global memory is the only read-write memory of the GPU which is accessible by all
thread blocks. This off-chip memory has a much higher latency than shared memory, and
thus it is recommended to access it in such a way that memory accesses by individual
threads can be coalesced in a single wide memory access. However, the coalescing rules
are much less restrictive on Fermi GPUs since global memory is cached. Read-only tex-
ture memory is optimized for spatial locality: this, for instance, might be useful when
the data being accessed resides in a 2D array. Constant memory, as the name implies, is
typically used to store program constants: when all threads of a warp read from the same
memory location, this results in a single memory request to the read-only constant cache
(in case of a cache hit) or device memory otherwise.

4.1.3 GPU optimization strategies

We finally outline some common optimization strategies to yield the best performance on
the GPU. The first quite obvious yet very important strategy is to arrange the computations
in a way to expose as much parallelism as possible, and thereby maximize the hardware
utilization. Hardware utilization is characterized by the occupancy metric which is one
of the major performance indicators on the GPU. Occupancy is defined as the ratio of the
number of resident warps to the maximum number of resident warps on a Multiprocessor.
For instance, on Fermi the maximal number of warps per MP is 48 which corresponds to
1536 threads, while the previous generation Tesla GPUs can have up to 32 resident warps
on an MP (1024 threads).

The second strategy is to maximize memory throughput which mainly means opti-
mizing the global memory data transfers. Global memory access, unless used properly,
can substantially limit the performance making a whole algorithm memory bound: for ex-
ample, reading data from global memory that is not yet in cache can cost about 400–800
clock cycles. As mentioned before, it is highly recommended to use coalescing access op-
timization to prevent wasting global memory bandwidth. Another common practice is to
preload the data from device memory all at once, then use shared memory for subsequent
computations, and, at the end, write the results back to global memory. In addition, one
should pay attention to arithmetic intensity of computations to keep the warp schedulers
busy during memory access periods.

Finally, register and shared memory allocation must be kept under control which has a
direct impact on occupancy. Recall that, the MP has a limited-size register file (32K-word
registers) and 64Kb of on-chip shared memory. When a grid is launched for a GPU kernel,
the amount of registers and shared memory used by the kernel determines the maximal
number of resident blocks per Multiprocessor (with maximum 8 blocks per MP). It is
therefore preferable to use smaller thread blocks (containing 64–128 threads) instead of
large ones.1 Besides, starting from CUDA 3.0, the programmer can specify launch bounds
for each kernel informing the compiler about the desired number of threads per block
and blocks per Multiprocessor. The compiler, in its turn, might decide to allocate some

1Upon a grid launch, the physical registers of an MP are split evenly between threads of a block.
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registers in local memory to meet the user requirements. Another technique to optimize
register usage is to declare frequently used local variables with volatile keyword. This
instructs the compiler to keep the respective variables in physical registers (instead of
substituting the corresponding expressions) which often has a positive effect on reducing
the register usage.

So far we have made the first exposure to the GPU architecture and CUDA framework.
In the following section, we will go through a number of code examples to help the reader
acquire some basic “look-and-feel” of GPU programming.

4.2 GPU programming: case study

In the course of our case study, we shall emphasize more on the practical aspects rather
then theoretical background since, in the first place, our aim is to introduce the reader to
some common programming practices on the GPU. Large background on data-parallel
algorithms can be found in the classical literature (HS86, Roo99, J9́2). We would also
recommend to visit the web-site http://gpgpu.org and have a look at the CUDPP li-
brary1 implementing data-parallel algorithms which constitute the “basic building blocks”
for many GPU applications.

4.2.1 Introduction

We assume that the reader has some basic knowledge of parallel programming, and rec-
ommend to consult a CUDA programming guide (CUD10) for details. Below, we only
highlight the basic concepts. The first thing to understand about a GPU program is that
any statement is to be executed by each participating thread independently. Threads of a
CUDA block are referenced by a predefined variable which we denote by thid. For in-
stance, the statement ‘x = x + thid * 2’ entails that each thread adds to the contents
of its register (or local) variable x the assigned thread index. That is, the 0th thread has
its value x unchanged, the 1st thread computes x = x + 2, the 2nd thread: x = x +
4, etc. The same applies to accessing any memory location: that is, the statement ‘x =
A[thid * 4 + 1]’ entails that threads read the data from the array A with stride 4. In
other words, the 0th thread reads A[1], the 1st thread – A[5], and so on. As a remark, if
A is a shared memory array, such an access will result in 4-way bank conflicts since every
4th thread of a warp reads from the same memory bank. Particular attention must be paid
to conditional statements which allows us to split the program execution into several code
paths. The key observation here is that threads of the same SIMD-group (warp) cannot
physically follow different code paths, and therefore all taken branches will be executed
in a way as if they were the pieces of one serial program. Thread synchronization can be
achieved by calling _syncthreads() library function which forces threads to wait on a
barrier until all of them reach this synchronization point.

1http://code.google.com/p/cudpp
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Figure 4.3: Naive parallel reduction (left); and work-efficient parallel reduction algorithms (right)

Figure 4.4: “Warp-sized” parallel reduction: the naive approach is used for each warp separately, afterwards
the results are combined in a final reduction step

4.2.2 Parallel prefix sum
We begin with a commonly used operation of computing a prefix sum. Using the termi-
nology of data-parallel algorithms, it is also known as scan or parallel reduction. More
precisely, what we need is the operation computing all-prefix-sums as defined below.

Definition 4.2.1. For a binary associative operation ⊕ and an ordered set of elements
{a0, a1, . . . , an−1}, the all-prefix-sums operation returns the ordered set

{a0, (a0 ⊕ a1), . . . , (a0 ⊕ a1 ⊕ · · · ⊕ an−1)}. •

The all-prefix-sums operation is a fundamental block of many parallel algorithms includ-
ing quicksort, string comparison, histograms, large integer addition, stream compaction,
polynomial evaluation, lexical analysis, etc. Clearly, the problem of computing all-prefix-
sums can be solved in O(n) time using a simple sequential algorithm.

For the parallel solution on the GPU, in (Har07) two algorithms are described, both
executing in O(log n) parallel time. These approaches can be best illustrated graphically
as shown in Figure 4.3, where xi.. j is a shortcut for xi ⊕ · · · ⊕ x j. In the right diagram,
0 denotes an identity symbol, that is, an element satisfying xi ⊕ 0 = xi for all xi. Typ-
ically, the size of data is chosen in a way that all manipulations can be performed in
GPU’s shared memory to save on global memory bandwidth. Unfortunately, neither of
these algorithms is efficient enough on the GPU. The first (naive) approach has to do a
lot of extra work since the results from the previous steps are not effectively reused. The
second (work-efficient) algorithm is supposed to overcome this problem by collecting the
intermediate results in the first up-sweep phase, and then updating the remaining ele-
ments “from the root to leaves” in the second down-sweep phase. The efficiency of this
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Listing 4.1 “warp-sized” parallel reduction with 256 threads
1: template < class OP > type32 . OP: prefix operation
2: warp_scan(type32 x, int thid) { . computes all-prefix-sums of 256 values x
3: extern _shared_ type32 data[]; . dynamic array of shared memory
4: const int WS = 32,HF = WS/2; . initialize warp-size and half-warp constants
5: volatile type32 ∗scan = data + HF + . shared memory space for parallel reduction
6: (thid%WS) + (thid/WS) ∗ (WS + HF + 1);
7: scan[−16] = Ident; . fill the gap with identity elements: OP(Ident, x) = x
8: type32 t; scan[0] = x; . load data to shared memory
9: t = OP(t, scan[−1]), scan[0] = t; . compute prefix sums for each warp

10: t = OP(t, scan[−2]), scan[0] = t; . using naive reduction algorithm
11: t = OP(t, scan[−4]), scan[0] = t;
12: t = OP(t, scan[−8]), scan[0] = t;
13: t = OP(t, scan[−16]), scan[0] = t;
14: volatile type32 ∗postscan = data + HF + . “post-scan” leading elements of each warp
15: (256/WS) ∗ (WS + HF + 1);
16: _syncthreads(); . synchronization barrier
17: if (thid < 8) { . post-scan 8 leading elements
18: volatile type32 ∗scan2 = postscan + thid;
19: scan2[−16] = Ident; . fill with identity elements
20: t = data[HF + WS − 1 + thid ∗ (WS + HF + 1)]; . read in the prefix sums of each warp
21: scan2[0] = t, t = OP(t, scan2[−1]);
22: scan2[0] = t, t = OP(t, scan2[−2]);
23: scan2[0] = t, t = OP(t, scan2[−4]);
24: scan2[0] = t;
25: }
26: _syncthreads(); . synchronization barrier
27: t = OP(scan[0], postscan[thid/WS − 1]); . update warp prefix sums, postscan[−1] = Ident
28: return t; . return prefix sums in registers
29: }

approach is attained at the price of increased number of parallel steps leading to worse
occupancy. Furthermore, the data needs to be accessed exclusively with power-of-two
strides causing many shared memory bank conflicts (unless special techniques to elimi-
nate bank conflicts are employed). Lastly, both approaches suffer from synchronization
overhead since threads need to be synchronized after each step to make sure the contents
of shared memory are updated correctly.

The better way here is to exploit warp-level parallelism: the corresponding algorithm,
called “warp-sized” parallel reduction, is illustrated in Figure 4.4. It was originally in-
troduced in CUDPP library. In the following discussion, we consider a slightly more
optimized version of this algorithm. The idea of the algorithm is to partition a block
of data into warp-sized chunks and process them independently using the naive parallel
reduction algorithm. Since warps execute instructions in a SIMD fashion, no synchro-
nization points are necessary. In the second run, we scan the “warp sums” (the leading
elements of each warp), and finally update the results after the first run using the scanned
warp sums. The pseudocode of the algorithm computing all-prefix-sums of 256 values
is given by Listing 4.1. Some comments are due here. In the code, type32 defines any
32-bit data type, floating-point or integer, OP denotes a prefix operation we apply to the
data elements, thid is a thread identifier, and Ident is an identity symbol. In line 5, we
allocate 49 words (WS + HF + 1) of shared memory per each warp. The data is loaded
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to shared memory in line 8 while in line 7 additional 16 words are filled with identity
elements to allow negative offsets (and, thus, save on guards for memory access in the
reduction algorithm). The actual prefix sums are computed in lines 9–13 across each
warp. The algorithm works according to the graphical description in Figure 4.3 (left).
Note that, the array scan is declared using volatile keyword to enforce the writes to
shared memory instead of “caching” the intermediate results in registers. In the second
pass (lines 17–25), we collect and scan the warp prefix sums. Since the total number of
warps is 8 (32× 8 = 256), it suffices to use 8 threads for that. In the end, each thread uses
a corresponding warp prefix sum to update the result from the first pass (see line 27).

In summary, observe that the entire algorithm requires only two synchronization points
(lines 16 and 26) irrespective of the actual data size. Besides, all threads are occupied dur-
ing the first run, while in the second run only threads from a single warp participate, and
thus there are no occupancy penalties. As a last remark, observe that the algorithm ad-
mits further optimizations: for instance, one might decide to process several elements per
thread to reduce the block size and improve the arithmetic intensity of computations, etc.

4.2.3 Vectorization of a serial algorithm
As a next example, we shall consider how to port the actual serial algorithm to the GPU.
Interestingly enough, the classical literature on parallel programming allocates much
space to describe sophisticated data structures or typical algorithms, such as computing
prefix sums or parallel matrix multiplication, while the question of translating a concrete
algorithm to a parallel environment is not answered often enough. We shall try to fill this
gap in a present discussion.

As a reference, we take the interpolation algorithm (Algorithm 3.2) from Section 3.2.2.
The algorithm entails two nested loops and, as noted in Section 3.3, can be executed in
OP(n, n) parallel time. For simplicity, we shall only exploit thread-level parallelism as-
suming that the algorithm can be run entirely by one CUDA block. Some ideas how
to distribute the computations across numerous thread blocks will be outlined in Sec-
tion 4.5.3. Also, for the time being, we shall not concern ourselves with the realization of
modular arithmetic which is a separate topic in our discussion, see Section 4.3. From the
pseudocode, we see that it suffices to use n threads, with n being the number of evaluation
points, since only n relevant entries of the generator matrix are updated at a time. List-
ing 4.2 provides a quite straightforward vectorization of Algorithm 3.2. We allocate three
shared memory arrays A, B and X of size block_sz for the generator columns G = (a, b)
and evaluation points, respectively. Here, block_sz denotes the actual number of threads
used per block which is equal to n aligned by 32 (warp size). We dedicate one thread to
process one row of the generator matrix G. Thus, the inner loop in Algorithm 3.2 disap-
pears. Threads are enumerated by thid, while last_thid is the ID of the last working
thread. In the code, sub_mul_mod(x, y, z,w) denotes an operation computing (x · y− z ·w)
over a prime field. Its concrete realization will be considered in Section 4.3.

In lines 24–30, we express the update of the column a using the temporary variables
s and t to prevent excessive branching and, thus, thread divergence. In addition, we
incorporate the update of the denominator det[0] to the main computations which is
also done to reduce branching overhead (see lines 17 and 22). Here, the key observation
is that having one thread to do some additional work is equivalent to having a whole warp
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Listing 4.2 Polynomial interpolation algorithm
1: int . returns the coefficients of f(x), s.t., f(xi) = yi, 0 ≤ i < n
2: vandermonde_interp(int ∗g_X, int ∗g_Y, const int n, const int block_sz, int thid) {
3: extern _shared_ int data[]; . dynamic array of shared memory
4: const int last_thid = n − 1; . ID of the last working thread
5: int ∗B = data + thid, ∗A = B + block_sz; . init shared memory arrays
6: int ∗X = data + block_sz ∗ 2, ∗det = X + block_sz, a, b, x;
7: if (thid <= last_thid) {
8: B[0] = g_Y[thid],X[thid] = g_X[thid]; . load y-values g_Y and eval. points g_X
9: A[0] = 1; . fill the column a with 1’s

10: }

11: if (thid == 0) { det[0] = 1; } . initially, the denominator is set to 1
12: _syncthreads(); . synchronization barrier
13: for(int j = 0; j < n; j++) {
14: if (thid < last_thid) {
15: a = A[1], b = B[1]; . read in the generator columns G = (a, b)
16: } else if (thid == last_thid) {
17: a = 0, b = det[0]; . last thread updates the denominator
18: }

19: int b0 = r[0], a0 = r[block_sz]; . read in a leading generator row (a0, b0)
20: b = sub_mul_mod(b, a0, a, b0); . update the column vector b
21: if (thid == last_thid) {
22: a = 1, det[0] = b, b = −b0; . save the denominator, set b[j + n] = −b0
23: }

24: s = 0, t = 0, k = thid + j + 1; . k is used as a case selector
25: if (k < n) {
26: s = a, t = X[k];
27: } else if (k > n) {
28: s = A[0], t = 1; . A[0] is a preceding element of a
29: }

30: a = sub_mul_mod(s, t, a,X[j]); . update the column vector a
31: _syncthreads(); . synchronization barrier
32: A[0] = a, B[0] = b; . shift down the generator columns
33: _syncthreads(); . synchronization barrier
34: }

35: return (b/det[0]); . divide the coefficients by the denominator
36: }

to do this work. In addition, this would cause threads from other warps to wait longer at
synchronization points. Therefore, in a time-critical code, it is always desirable to arrange
the computations in a “uniform” way.

At the end of each iteration, the generator columns are shifted down in shared memory
(line 32). Remark that, the shared memory arrays A and B are accessed in a quite unusual
way using just the indices 0 and 1: this is because we have added a thread identifier thid
to the address of each variable upon initialization, see line 5.

Unfortunately, the main weakness of the above algorithm is its low arithmetic com-
plexity. Indeed, there are only two actual “arithmetic” statements in the loop (lines 20
and 30), while the remaining code is needed for case distinction and memory operations.
One way to improve this is to exploit instruction-level parallelism by unrolling the in-
ner loop. At the same time, this would enable us to process higher-degree polynomials
using thread blocks of the same size. However, we need to be careful here since loop
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Listing 4.3 Polynomial interpolation with unrolled inner loop
1: template < int Mod4 > int4 . returns the coefficients of f(x), s.t., f(xi) = yi, 0 ≤ i < n
2: vandermonde_quad_interp(int4 ∗g_X, int4 ∗g_Y, const int n, const int block_sz, int thid) {
3: extern _shared_ int data[]; . dynamic array of shared memory
4: const int last_thid = (n + 3)/4 − 1; . ID of the last working thread
5: int ∗B = data + thid, ∗A = B + block_sz, ∗X = A + block_sz; . init shared memory arrays
6: int ∗det = data + block_sz ∗ 3, a_prev = 0;
7: int4 a, b, w; . SIMD-vectors to store the columns of a generator matrix
8: if (thid <= last_thid) {
9: b = g_Y[thid],w = g_X[thid]; . load y-values g_Y and eval. points g_X

10: a.x = a.y = a.z = a.w = 1; . fill the column vector a with 1’s
11: }

12: X[0] = w.x, B[0] = b.x, A[0] = 1;
13: if (thid == 0) { det[0] = 1; } . initially, the denominator is set to 1
14: _syncthreads(); . synchronization barrier
15: for(int j = n − 1; j >= 0; j−−) {
16: b.x = b.y, b.y = b.z, b.z = b.w; . shift down the generator columns
17: a.x = a.y, a.y = a.z, a.z = a.w; . and the array eval. points
18: w.x = w.y, w.y = w.z, w.z = w.w;
19: if (thid < last_thid) {
20: b.w = B[1], w.w = X[1];
21: } else if (thid == last_thid) {
22: a.w = 0, b.w = det[0]; . last thread updates the denominator
23: }

24: int b0 = r[0], a0 = data[block_sz]; . read in a leading generator row
25: b.x = sub_mul_mod(b.x, a0, a.x, b0); . update the column vector b
26: b.y = sub_mul_mod(b.y, a0, a.y, b0);
27: b.z = sub_mul_mod(b.z, a0, a.z, b0);
28: b.w = sub_mul_mod(b.w, a0, a.w, b0);
29: if (thid == last_thid) {
30: det[0] = b; . save the denominator
31: if (Mod4 == 1) { a.x = 1, b.x = −b0; } . set b[j + n] = −b0; compile-time decision
32: else if (Mod4 == 2) { a.y = 1, b.y = −b0; }
33: else if (Mod4 == 3) { a.z = 1, b.z = −b0; }
34: else { a.w = 1, b.w = −b0; }
35: } . read in the top eval. point x[j]:
36: x0 = r[block_sz ∗ 2], k = j − 4 ∗ thid − 1; . k is a case selector
37: if (thid == j/4) { a_prev = 0; }
38: _syncthreads(); . synchronization barrier
39: int t1 = 0, s1 = x0, tmp;
40: if (k >= 0) { s1 = sub_mod(s1, w.x); } . computes s1 = s1 − w.x
41: else { t1 = a_prev; } . a_prev is an element preceding a.x
42: tmp = a.x, a.x = sub_mul_mod(t1, s1, a.x); . computes a.x = t1 − s1 ∗ a.x
43: .......
44: ....... . updating the vector elements a.x, a.y, a.z, a.w
45: .......
46: B[0] = b.x; A[0] = a.x, a_prev = a.x, X[0] = w.x; . write the results to shared memory
47: _syncthreads(); . synchronization barrier
48: } . divide the coefficients by the denominator:
49: return (b.x/det[0], b.y/det[0], b.z/det[0], b.w/det[0]);
50: }
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4 Realization and experiments

Figure 4.5: Left-shift of a row vector stored implicitly in threads’ register space. Each thread keeps 4
consecutive data elements in variables a.x, a.y, a.z and a.w.

unrolling increases register pressure, and therefore can have a negative effect on the oc-
cupancy. We have decided to unroll the loop by the factor of 4: in this situation we still
have enough registers per thread. Accordingly, the number of working threads decreases
to dn/4e, where n is the number of evaluation points. Thread local variables a and b rep-
resenting the column vectors of the matrix G = (a, b) are now replaced by SIMD-vectors
of type int4 storing 4 consecutive data elements. The implementation is given in List-
ing 4.3. Despite the seeming complexity, the algorithm follows the same line of thoughts
as the one from Listing 4.2. We highlight the main features of the algorithm. Each thread
now processes 4 rows of the generator matrix at a time which is reflected in lines 25–28
and 39–46. Note that, we have also bypassed some details on updating the column vector
a for reasons of space.

Perhaps one of the tricky parts is how the shifting of the column vectors a and b and
the array of evaluation points w is realized (see lines 16–20 and 46–47). Here, the idea
is to shift the vector contents in register space and use shared memory only to relocate
the “corner” elements (a.x, b.x or w.x) as illustrated in Figure 4.5. In that way, we can
significantly reduce the usage of shared memory. Another remarkable feature of the al-
gorithm is the use of template parameter Mod4 denoting the “data parity” n mod 4. The
motivation for this is that the last element of a column vector may fall into different com-
ponents of length-4 SIMD-vector, depending on the actual number of points n. Hence, to
avoid lengthy conditional statements selecting vector components, we can parameterize
the algorithm by ‘n mod 4’, letting the compiler do register selection at compile time (see
lines 31–34). The last thing that worth attention is that we no longer keep the evaluation
points in shared memory but, instead, allocate a SIMD-vector w for that, to be consistent
with our data storage pattern.

In conclusion, the algorithm in Listing 4.3 has a much higher arithmetic intensity.
Furthermore, we have significantly reduced the usage of shared memory by moving the
relevant data to register space. Provided that, the maximal number of threads per block is
limited by 1024 (on Fermi GPUs), we can now interpolate polynomials of degree up to
4096.

4.2.4 FFT algorithm

In the sequel of our case study, we consider a slightly more advanced topic of computing
the Fast Fourier Transform (FFT) on the GPU. For expository purposes, we shall focus
only on 512-point and 1024-point transforms. Due to the fact that the FFT has applications
in almost every field of modern science, the interest to efficient GPU implementations
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Figure 4.6: Butterfly networks for decimation-in-frequency Cooley-Tukey (left) and Bailey’s variation of
Stockham (right) FFT algorithms

has risen tremendously with the release of CUDA framework. At the time of writing,
several GPU libraries have been developed which are specialized on computing floating-
point (or complex-arithmetic) Fourier transforms, for example: (CUF10, GPU, NUF), see
also (GLD+08). To date, there are also two algorithms dealing with finite field transforms
on the GPU (Eme09, MP10). We discuss some details of our work here. We assume that
the reader has some basic knowledge about the FFT algorithms. A very good practical
study with examples and source code can be found in (J1̈1, Chapter 21). To recall the
basic facts, let F be a field with some properties to be identified shortly.1 Usually, this
is a field of complex numbers C or a prime field. Then, for a vector a ⊂ Fn, the n-point
Discrete Fourier Transform (DFT) is a linear map F : Fn → Fn defined as c := F [a],
where ck =

∑n−1
k=0 akwk

n for 0 ≤ k < n. Here, wn is an n-th primitive root of unity having the
following properties: wn

n = 1 and wk
n , 1 (0 < k < n). The inverse DFT F −1 is defined in

a similar way: a := F −1[c] with a j = 1
n

∑n−1
j=0 c jw

− j
n for 0 ≤ j < n.

Naturally, the DFT exists if there is an n-th primitive root of unity (an element of order
n) in a field F, and n can be inverted in F. In C, we simply take wn = exp(±2πi/n), while
in a finite field specific conditions must be met for wn to exist, see (ER83). In a matrix
form, the DFT can be formulated as a multiplication by the so-called Fourier matrix
VF (wn) := [wkl

n ] ∈ Cn×n, for 0 ≤ k, l < n, which belongs to the class of Vandermonde
matrices due to the properties of the roots of unity.

All the variety of FFT algorithms originate from different factorizations of the Fourier
matrix. In particular, when it comes to the realization on a parallel platform, usually the
method of choice is a Stockham self-sorting FFT algorithm. Here, the reason is that a
classical Cooley-Tukey FFT accesses data with a power-of-two strides which can have a
significant impact on the throughput of GPU’s shared memory (due to bank conflicts), let
alone the wasted external memory bandwidth (see Section 4.1.1). Moreover, the Cooley-
Tukey algorithm has an index permutation phase which results in almost randomized
memory access. In contrast, the Stockham FFT incorporates index permutations directly
into the algorithm, and accesses all data exclusively with unit strides. However, the price
for that is that the data processing cannot be done “in-place” anymore. On the GPU, we

1Strictly speaking, it is only required for F being a ring with a particular cyclic group for the Fourier
transform to exist. Yet, we shall not consider these subtleties here.
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Figure 4.7: Mapping 512-point FFT to a CUDA block of 128 threads (left); 1024-point FFT with 128
threads per block (right)

use the Bailey’s formulation (Bai88) of this algorithm. Without excessive matrix notation,
the differences between two algorithms are illustrated in Figure 4.6. One can see that,
on the right diagram, both operands of each radix-2 “butterfly” operation are accessed
in a contiguous manner. In fact, Bailey’s algorithm consists of two algorithm variants
separated by a matrix transpose in the matrix data is taken in a row-major order. For the
first variant, the size of contiguous blocks of data fetched from the memory halves in
each step, while the output data pattern is always the same, see Figure 4.6 (right). For the
second variant, everything is vice a versa: that is, the data is always fetched using the same
pattern while the results after a “butterfly” operation are saved back in contiguous blocks
of increasing size. The crossover point between the two variants can be chosen arbitrary
depending on the transform size and the SIMD-vector length on a target architecture.
Certainly, the same algorithm’s outline can be used for the FFTs of higher radices.

We now exemplify how to compute 512 and 1024-point FFTs on the GPU. The reason
why we have taken these particular transforms is because they fit nicely in a single CUDA
block, and can be used as “basic building blocks” to construct larger transforms. The main
design question is how to distribute the work between threads: here, we are free to choose
the FFT-radix (which is tied to the number of threads per block) as well as the crossover
between two algorithm variants (see above). For 512-point FFT, the naive solution would
be to use radix-2 transform, and therefore 256 threads per block since each thread is then
assigned to computing one FFT-butterfly. However, this way, the number of arithmetic
operations per thread would be far too low, while shared memory access would be quite
intensive. The better solution is to use radix-4 transform with 128 threads per block
instead, and factor 512-point FFT as 2×44. Schematic view of the FFT algorithm is given
in Figure 4.7 (left). We start by precomputing the so-called twiddle factors (the powers of
wn), so that they can be accessed in a contiguous manner throughout the algorithm from
shared memory. Next, we perform a radix-2 step, and partition threads in two halves of
64 threads each to compute two 256-point transforms separately. Each 256-point FFT is
realized in four radix-4 steps (256 = 64 × 4), where, after each step, the data is reordered
in shared memory. Recall that, a radix-k “butterfly” operation is formally defined as:

[y0, . . . , yk−1]T = VF (wk) diag(1, α j, . . . , α(k−1) j)[x0, . . . , xk−1]T ,

where α j is a twiddle factor and VF (wk) is an k × k Fourier matrix. For instance, one
radix-4 step of the algorithm can be realized as follows, see also (Eme09, Section 5.4):
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1: procedure radix4_step(x0, x1, x2, x3, α, w8)
2: (d0, d1)← bfy_radix2(c2, c0, α

2), (d2, d3)← bfy_radix2(c3, c1, α
2)

3: (y0, y2)← bfy_radix2(d2, d0, α), (y1, y3)← bfy_radix2(d3, d1, α · w8)
4: return [y0, y1, y2, y3]
5: end procedure

In the above pseudocode, w8 denotes the 8-th root of unity, α is a suitable twiddle factor,
and bfy_radix2(x0, x1,w) is a primitive radix-2 “butterfly” operation computing: (y0, y1)← x0 ± x1 · w.
After two radix-4 steps, we perform the matrix transposition (in shared memory) and
switch to the second variant of Bailey’s approach. The reason why we do this is because
it becomes increasingly less efficient to fetch the input data with each step for reasons
explained above.

To realize 1024-point transform, we again take 128 threads per block, but use differ-
ent factorization of the Fourier matrix. Namely, we split the transform as 2 × 83 since
1024 = 128 × 8. The procedure is outlined in Figure 4.7 (right). The algorithm starts
by performing one radix-2 step, then the transform is split in two 512-point FFTs com-
puted by each group of 64 threads separately in 3 steps, so that each thread performs a
radix-8 “butterfly” operation in each step (512 = 64 × 8). Note that, in this case, we
only use the first algorithm variant in Bailey’s approach since the matrix transposition
would require too large memory space (32 × 16 words). Furthermore, during the last
radix-8 step, the contiguous blocks of the input data have size 8, hence shared memory
access does not cause much performance penalty (in comparison to radix-4 steps). Natu-
rally, the same FFT-layout can be utilized for 512-point transform, considered previously,
where we would use 64 threads per block instead. Generally, the transforms of higher
radices are more preferable since they improve the arithmetic intensity of the computa-
tions while reducing the amount of memory transactions. However, higher radices also
have a negative effect on register usage. That is why, in real applications, choosing one
or another factorization of the transform will mostly be determined by the complexity of
the underlying arithmetic: for example, whether it is floating-point, arbitrary modular, or
special modular in case of Fermat/Mersenne transforms, etc. According to the bench-
marks in (Eme09, Section 6), with this approach, we have been able to achieve up to 462
GFlop/s1 for 512-point finite-field FFTs on the GeForce GTX 280 graphics processor,
thereby utilizing about 50 % of its peak theoretical performance. The latter one is esti-
mated as 933 GFlop/s (single-precision floating-point peak performance). Though, these
results seem to be somewhat outdated at the time of writing, they still show the efficiency
of the proposed approach.

Finally, to realize arbitrary-size transforms on the GPU, one usually applies a hierar-
chical approach where a larger transform is decomposed into multiple smaller ones that
fit in GPU’s shared memory, and therefore can be computed by one thread block: for in-
stance, using the algorithms given above. Then, the transformed sequences are combined
together by multiplying them with appropriate twiddle factors.

1GFlop/s stands for “109 floating-point operations per second.”

97



4 Realization and experiments

Listing 4.4 24-bit modular arithmetic for Tesla GPUs
1: int
2: mul_mod(int a, int b, int m, float invm) { . computes a · b mod m
3: float hf = _uint2float_rz(_umul24hi(a, b)), . compute 32 MSB of the product a · b
4: prodf = _fmul_rn(hf, invm); . invm = (float)(1 � 16)/m
5: int l = _float2uint_rz(prodf), . truncate towards zero
6: r = _umul24(a, b) − _umul24(l,m); . r ∈ [−2m + ε; m + ε]
7: if (r < 0) { . adjust the result if negative sign
8: r = r + _umul24(m, 0x1000002); . r = r + m · 2
9: }

10: return umin(r, r −m); . subtract m if r ≥ m
11: }

4.3 Modular arithmetic

As we have seen in Section 2.2, the homomorphism approach have many advantages over
the classical symbolic algorithms which also has a positive effect on the attained asymp-
totic complexity (see Section 2.5). However, to observe these benefits in practice, one
needs to pay attention to some technical aspects since, in the end, everything boils down
to the efficiency of the underlying arithmetic. In this section, we discuss the subroutines
providing modular arithmetic support for the main algorithms discussed in the following
sections.

Realization of the fast modular arithmetic on the GPU is not an easy task to accom-
plish since the graphics hardware was heavily optimized for floating-point performance,
while, for example, integer division and modulo (‘%’) operations are particularly slow on
the GPU and should not be used in a time-critical code. More than that, GPUs with Tesla
architecture support only 24-bit integer multiplication natively while 32-bit multiplication
is demoted in more primitive operations. Fortunately, the next generation Fermi GPUs
support 32-bit integer arithmetic fully in hardware. To keep our algorithms backward-
compatible, we shall consider the realization of relevant modular operations on both ar-
chitectures.

4.3.1 Primitive operations

Tesla architecture. Certainly, the most demanding operation is the modular multiplication
whose realization we consider in detail. On Tesla GPUs, we restrict ourselves to 24-bit
modular arithmetic which reflects the native hardware capabilities. Another reason for
that is because a 24-bit residue fits in the mantissa of a single-precision floating-point
number, and thus we can replace expensive integer division by floating-point operations.
Integer multiplication is realized in two instructions: mul24.lo and mul24.hi which com-
pute 32 least and most significant bits (LSB and MSB) of the product of 24-bit integer
operands, respectively. These instructions can be accessed directly from CUDA using
inline assembly (PTX10).

Note that, in some earlier works, the authors were not aware of the inline PTX assem-
bly and had to use numerous tricks to get the modular arithmetic working. For example,
in (MPS07) it was suggested to use composite moduli consisting of 2 primes whose prod-
uct fits in 24 bits. Hence, unfolding the CRT (Chinese Remainder Theorem) over these
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Listing 4.5 24-bit modular arithmetic for Tesla GPUs
1: int . computes (x1y1 − x2y2) mod m
2: sub_mul_mod(int x1, int y1, int x2, int y2, int m, float inv1, float inv2) {
3: float h1 = _uint2float_rz(_umul24hi(x1, y1)), . two inlined mul_mod operations
4: h2 = _uint2float_rz(_umul24hi(x2, y2));
5: int l1 = _float2uint_rz(_fmul_rn(h1, inv1)), . inv1 = 65536.0f/m
6: l2 = _float2uint_rz(_fmul_rn(h2, inv1)); . multiply and truncate
7: int r = mc + _umul24(x1, y1) − _umul24(l1,m) − . mc = m · 100
8: _umul24(x2, y2) + umul24(l2,m) . compute difference of two mul_mod’s
9: float rf = _uint2float_rn(r) ∗ inv2 + e23; . rf = br/mc, inv2 = 1.0f/m, e23 = (float)(1 � 23)

10: r = r − _umul24(_float_as_int(rf),m); . compute: r = r − br/mc ·m
11: return (r < 0 ? r + m : r);
12: }

1 imul.hi.u24.u24 r9, r0, r1; (r0 = x1, r1 = y1) 9 imad.u24 r4 (c2), r7, r8, r11; (r7 = m)
2 i2f.f32.u32.trunc r10, r9; 10 f2i.u32.f32.trunc r0, r0;
3 imul.hi.u24.u24 r9, r2, r3; (r2 = x2, r3 = y2) 11 imad.u24 r4 (c2), r2, r3, r4;
4 fmul.trunc r10, r10, r4; (r4 = inv1) 12 imad.u24 r0, r0, r7, r4;
5 imad.u24 r11, r0, r1, r8; 13 i2f.f32.u32 r4, r0;
6 i2f.f32.u32.trunc r0, r9; 14 fmad r4, r4, r5, c[0x1][0x3]; (r5 = inv2)
7 f2i.u32.f32.trunc r8, r10; 15 imad.u24.c0 r0 (c2), r4, r7, r0;
8 fmul.trunc r0, r0, r4; 16 iadd r0 (c0.sign), r7, r0;

Table 4.1: Disassembly of ‘(x1y1 − x2y2) mod m’ operation on Tesla architecture.

two primes, the modular multiplication can proceed without intermediate values that ex-
ceed 24 bits. We find that this method requires too many arithmetic operations. The au-
thors of (HW09) proposed to use 12-bit residues since the reduction after multiplication
can proceed in floating-point without overflow concerns. In the other paper (BCC+09),
280-bit residues were partitioned in 10-bit limbs to facilitate multiplication. As a result,
neither of these techniques can exploit the GPU capabilities at full. Another alternative
would be to use an algorithm based on Montgomery multiplication but, after much trial-
and-error, we have found out that a simpler approach that uses floating-point arithmetic
works best in practice.

The algorithm computing a · b mod m for 24-bit residues a and b is given by the
procedure mul_mod in Listing 4.4. A description of the CUDA-specific functions used in
the code is provided below:

• _umul24/_umul24hi: return 32 least and most significant bits of the product of
24-bit unsigned integer operands, respectively;

• _uint2float_rz: convert an unsigned integer to single-precision floating-point num-
ber using “round towards zero” rounding mode;

• _float2uint_rz/_float2uint_rn: convert a single-precision floating-point number to
unsigned integer using “round towards zero” and “round to nearest even” rounding
modes, respectively;

• _fmul_rn: return the product of two single-precision floating-point numbers using
“round to nearest even” rounding mode;

• _float_as_int: reinterpret a single-precision floating-point number as an integer
without conversion;
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Listing 4.6 31-bit modular multiplication on Fermi cards
1: int
2: mul_mod(int a, int b, int m, double inv) { . computes a · b mod m
3: int hi = _umulhi(a ∗ 2, b ∗ 2); . compute 32 MSB of the product
4: . multiply and truncate, inv = (double)(1 � 30)/m:
5: double rf = _uint2double_rn(hi) ∗ inv + (double)(3 � 51); . rf = ba · b · 230/mc
6: int r = a ∗ b − _double2loint(rf) ∗m; . compute partial residue
7: return (r < 0 ? r + m : r); . adjust by m if negative sign
8: }
9: int . computes (x1y1 − x2y2) mod m

10: sub_mul_mod(int x1, int y1, int x2, int y2, int m, double inv) {
11: int r1 = mul_mod(x1, y1,m, inv), . compute x1 · y1 mod m
12: r2 = mul_mod(x2, y2,m, inv); . compute x2 · x2 mod m
13: r1 = r1 − r2; . subtract the residues
14: return (r1 < 0 ? r1 + m : r1);
15: }

• umin: return the minimal of two unsigned integers.

The idea behind the algorithm can be explained as follows. First, we partition the product
a · b in 32- and 16-bit parts, and then apply the following congruence:

a · b = 216hi + lo = (m · l + λ) + lo ≡m λ + lo = (216hi − m · l) + lo = a · b − m · l,

where 0 ≤ λ < m. Denoting r := a · b−m · l, it can be shown that r ∈ [−2m + ε; m + ε] for
0 ≤ ε < m. Since r fits in 32 bits, it suffices to consider only 32 least significant bits of
both products a · b and m · l in order to compute it (see line 6). At the end, in lines 7–10,
we further reduce r to bring it to the valid range [0; m− 1]. The procedure, sub_mul_mod,
in Listing 4.5 evaluates an expression: (x1y1 − x2y2) mod m, which is frequently used by
division-free matrix algorithms, see Section 3.2. In essence, the algorithm entails two in-
lined mul_mod operations with the exception that we compute the difference of the partial
residues in lines 7–8 before the final reduction step. The advantage is that the compiler
can merge the subsequent multiply and add instructions producing more efficient code.
The remaining lines 9–11 are needed to bring r to the valid residue range. In particular,
in line 10 we also use a mantissa trick (Hec96) to multiply by 1/m and truncate the result
using one multiply-add instruction. We have studied the efficiency of our approach using
cuobjdump disassembler shipped as part of CUDA toolkit. Table 4.1 shows the produced
machine code for sub_mul_mod operation. We see that it maps to 16 native GPU instruc-
tions where 6 of them, shown in bold face, are fused multiply-adds (FMAs). Instruction
semantics can be found in the description of cuobjdump tool.1

Fermi architecture. On Fermi cards, 32-bit integer multiplication is no longer a problem,
and we can enjoy 31-bit modular arithmetic. Additionally, we can use double-precision
arithmetic which is now only two times slower than single-precision. One method to
multiply two residues, which takes advantage of floating-point, is described in (MP10).
Yet, this approach was essentially borrowed from the CPU code and, thus, is not optimal
on Fermi GPUs. To achieve better performance, we can utilize _umulhi intrinsic available

1www.dahlsys.com/upload/cuobjdump.pdf
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1 shl r8, r0, 0x1; (r0 = x1) 10 dfma r8, r4, r8, r6; ({r4, r5} = inv, {r6, r7} = 3 � 51)
2 shl r9, r1, 0x1; (r1 = y1) 11 imul.u32.u32 r9, r3, r2;
3 shl r10, r2, 0x1; (r2 = x2) 12 dfma r4, r4, r10, r6;
4 shl r11, r3, 0x1; (r3 = y2) 13 imad.u32.u32 r0, -r13, r8, r0; (r13 = m)
5 imul.u32.u32.hi r8, r8, r9; 14 imad.u32.u32 r4, -r13, r4, r9;
6 imul.u32.u32 r0, r1, r0; 15 vadd.ud.u32.u32.min r0, r0, r13, r0;
7 imul.u32.u32.hi r10, r10, r11; 16 vadd.ud.u32.u32.min r4, r4, r13, r4;
8 i2f.f64.u32 r8, r8; 17 iadd r0, r0, -r4;
9 i2f.f64.u32 r10, r10; 18 vadd.ud.u32.u32.min r0, r0, -r13, r0;

Table 4.2: Disassembly of ‘(x1y1 − x2y2) mod m’ operation on Fermi architecture.

in CUDA which returns 32 most significant bits of a 64-bit integer product. The procedure
mul_mod realizing this idea is given by Listing 4.6 and CUDA-specific functions are listed
below:

• _umulhi: return 32 most significant bits of the product of 32-bit unsigned integer
operands;

• _uint2double_rn: convert an unsigned integer to double-precision floating-point
number using “round towards nearest even” rounding mode;

• _double2loint: extract a lower 32-bit word of a double-precision floating-point
number and reinterpret it as an integer without conversion.

The algorithm is very similar to its 24-bit counterpart. To compute a · b mod m for 31-bit
residues a and b, we partition the product a · b in 32- and 30-bit parts (hi and lo), and use
the following congruence:

a · b = 230hi + lo = (m · l + λ) + lo ≡m λ + lo = (230hi − m · l) + lo = a · b − m · l,

where 0 ≤ λ < m. Again denoting r := a · b − m · l, we can show that r ∈ [−m + ε; ε] for
0 ≤ ε < m. Hence, it only remains to adjust r by m in case of negative sign. In line 5, we
use a “magic number” 351 in order to truncate a double-precision number to the nearest
integer after multiplication, see (Hec96). This trick is frequently used to avoid explicit
conversion from floating-point to integers. What concerns the operation sub_mul_mod,
there is no performance gain in inlining the code (as it used to be for 24-bit modular
arithmetic), hence we simply invoke the procedure mul_mod twice to compute the result.
Note that, in the listing, ‘(r1 < 0 ? r1 + m : r1)’ is equivalent to ‘umin(r1, r1 + m)’ which
can be mapped to a single Fermi’s instruction from Video ISA if we use appropriate
assembler intrinsics, see (PTX10). We again examine the quality of the produced machine
code for the operation sub_mul_mod using cuobjdump tool, see Table 4.2. This time
sub_mul_mod maps to 18 native GPU instructions: in the disassembly FMA and Video
instructions are highlighted in bold face.

4.3.2 Modular inverse
We next consider the operation of computing a modular inverse which is used at several
places in the matrix-based algorithms (see Section 3.2). Note that, its realization is very
similar on both architectures, therefore we next discuss the approach optimized for Fermi
cards. To compute a modular inverse, we could apply the Extended Euclidean Algorithm
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Algorithm 4.1 Kaliski Montgomery modular inverse algorithm
1: procedure kaliski_montgomery_inverse(x, m)
2: v← x, u← m, s← 1, r← 0, k← 0;
3: while v > 0 do
4: if u mod 2 = 0 then u← u/2, s← 2s
5: else if v mod 2 = 0 then v← v/2, r← 2r
6: else if u > v then u← (u − v)/2, r← r + s, s← 2s
7: else v← (v − u)/2, s← s + r, r← 2r fi
8: k← k + 1
9: od

10: if r ≥ m then r← r −m fi
11: return {r← m − r, k} . returns r = x−12k mod m
12: end procedure

(see Section 2.1.3). However, the EEA extensively uses divisions, while the graphics
hardware does not have native support for integer division operation. That is why, we
have decided to use Montgomery’s algorithm instead. As a starting point, we have taken
the algorithm from (dDBQ04) designed for FPGA implementation which uses only prim-
itive arithmetic operations. The latter algorithm, in its turn, was based on a binary GCD
algorithm, originally proposed by Kaliski (Kal95), which computes a Montgomery mod-
ular inverse. In other words, for 31-bit residue x modulo m, the algorithm by Kaliski
computes r := x−12k mod m iteratively where 31 ≤ k ≤ 62. To be able to track the origins
of our approach, in Algorithm 4.1 we give a pseudocode of Kaliski’s algorithm. Here
the number k of iterations is bounded by the moduli bit-length. In (dDBQ04), the above
algorithm was essentially rewritten to facilitate realization on the hardware platform. We
further modify it to yield less number of arithmetic operations. Note that, the original
approaches from (Kal95, dDBQ04) use the second iterative phase to remove the unneces-
sary factor 2k of r. Instead, here we follow a different approach, proposed (SK00), which
is based on the Montgomery multiplication. We next discuss its details. Recall that, for
two residues a and b modulo m, the Montgomery multiplication computes:

MonPro(a, b,m) := a · b · 2−s mod m, with s = dlog2 me.

Montgomery’s algorithm can be realized in just few lines of code as follows, see (BZ10,
Algorithm 2.7):

c← a · b, q← µ · c mod β, MonPro(a, b,m)← (c + q · m)/β,

where, in our case, β = 232 and µ = −m−1 mod β can be precomputed in advance. Thus,
in order to divide out the factor 2k from r, the trick is perform two Montgomery mul-
tiplications with special factors (powers of two). First, whenever k ≥ 32, we compute
MonPro(r, 1,m), such that:

r ← MonPro(r, 1,m) = x−12k−32 mod m, k ← k − 32.

Finally, the second Montgomery multiplication by 232−k, removes the remaining factor 2k

for 0 < k < 32:

r ← MonPro(r, 232−k,m) = (x−1)(2k)(2k−32)(232) mod m = x−1 mod m.
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Listing 4.7 31-bit Montgomery modular inverse
1: int
2: montgomery_inverse(int x, int m, int mu) { . computes x−1 mod m
3: int v = x, u = m, s = 1, r = 0, k = 0;
4: while (v! = 0) { . first stage: compute r = x−12k mod m
5: rs = r;
6: if (v & 1) {
7: uv = v;
8: if ((v xor u) < 0) { v = v + u; }
9: else { v = v − u; }

10: if ((v xor uv) < 0) { u = uv, rs = s; }
11: s = s + r;
12: }

13: v = v/2, r = rs ∗ 2, k = k + 1;
14: }

15: r = m − r; . second stage: get rid of 2k factor
16: if (r < 0) { r = r + m; } . r = x−12k mod m, 31 ≤ k ≤ 62
17: if (k >= 32) { . first Montgomery multiplication: r = x−12k−m (mod m)
18: s = r ∗mu; . mu = −m−1 mod 232

19: u = s ∗m, v = _umulhi(s,m); . (v, u) = s ·m (63 bits)
20: u = u + r, r = v + (u < r), k = k − 32; . r = ((v, u) + r)/232

21: }

22: if (k == 0) return r; . second Montgomery multiplication:
23: s = r � (32 − k), d = s ∗mu; . mu = −m−1 mod 232

24: u = d ∗m, v = _umulhi(d,m); . (v, u) = d ·m (63 bits)
25: d = r � k, u = u + s;
26: r = v + d + (u < s); . r = ((v, u) + s)/232 + d
27: return r;
28: }

The modular inverse algorithm implementing these ideas is given in Listing 4.7. In the
first stage, lines 3–14, we compute iteratively x−12k mod m. Then, the additional factor
2k is removed in lines 15–26 by means of two Montgomery multiplications. Comments
in the pseudocode should help further understanding the algorithm.

4.3.3 Modular reduction

The purpose of modular reduction is to compute a set of residues of a large integer mod-
ulo a set of primes (m1, m2, . . . , mn). This corresponds to the first stage of a modular
algorithm, see Section 2.2. According to some empirical evidence, the cost of this opera-
tion might become very high, if not dominating, when the modular algorithm is applied to
polynomials with large coefficients but moderate degrees. Therefore, it is highly desirable
to perform this operation directly on the GPU, also because the realization is plain easy.

We dedicate one thread to compute a residue modulo some prime mi using a simple it-
erative algorithm, known as single-word division, which can be found in many textbooks:
see, for instance, (BZ10). Thread workload is perfectly balanced since each thread does
the same job. There are only two complications: the first one is how to access the input
data in an optimal way since integers being reduced might be too large for allocating them
entirely in shared memory; while the second one relates to the fact that integer division,
as noted earlier, is highly inefficient on the GPU. To deal with the first problem, we can
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“stream” the data through the kernel: that is, partition and process the data in chunks of
size just enough to fit in shared memory. As we only need a single pass through the data,
no further difficulties can occur. Moreover, we can use a “double-buffering” technique to
preload the next chunk in registers while the computations are performed on the current
chunk residing in shared memory. For the second problem, luckily there are methods to
avoid integer division using some precomputation. We have adopted the algorithm given
in (MG11), which also seems to be the method of choice implemented in Gmp library.1

The algorithm is based on precomputing a reciprocal:

v = b(264 − 1)/(2m)c − 232,

where m is a 31-bit modulus, and 231 ≤ v < 232. Then, a single-word division of a large
integer X (consisting of n machine words) by m can be carried out as follows:

1: procedure div_by_limb(X: array, n, m, v)
2: r← 0, d← m · 2
3: for i = n − 1 downto 0 do . divide a large integer X by d
4: (u1, u0)← (r,X[i]) . load the next limb of X
5: (q1, q0)← v · u1 + (u1, u0)
6: q1 ← (q1 + 1) mod 232

7: r← (u0 − q1 · d) mod 232

8: if r > q0 then r← (r + d) mod 232 fi
9: if r ≥ d then r← r − d fi

10: od
11: if r ≥ m then r← r −m fi
12: return r . return a residue X mod m
13: end procedure

A similar algorithm for 24-bit modular arithmetic can be derived by analogy.

4.3.4 Mixed radix conversion
Lastly, we turn to the realization of the MRC algorithm. To recapitulate, for a set of
residues (x1, x2, . . . , xn) and the corresponding relatively prime moduli (m1, m2, . . . , mn),
the MRC algorithm searches for a large integer X in the mixed-radix form:

X = γ1M1 + γ2M2 + · · · + γnMn,

where M1 = 1, Mi = m1m2 . . .mi−1 (i = 2, . . . , n). A key property of this algorithm is
that the MR digits {γi} can be computed without resorting to large integer arithmetic. This
fact has a decisive effect for selecting this algorithm for the realization on the GPU. As
mentioned before, the MR digits can be computed in OP(n, n) parallel time. Indeed, by
looking at formulas (2.4) in Section 2.2.2, we see that this algorithm fits very well to our
model of computation. A simple parallel algorithm computing the MR digits is shown
in Figure 4.8 (left). Here, in step i (i = 1, . . . , n − 1), we use a previously computed digit
γi to update all the remaining digits γi+1 through γn. Beside the assigned digit γ j, in step
i, each thread also evaluates Mi+1 = Mimi mod m j. To further simplify the computations,
we can sort the moduli set in increasing order, such that:

m1 < m2 < · · · < mn.

1http://gmplib.org
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4.3 Modular arithmetic

Figure 4.8: Basic MRC algorithm working with 5 threads indexed by TID (left). Improved MRC algorithm
running with m_chunk := 4 threads; the numbers show the order in which the subalgorithms are applied
(right).

Then, the expressions of the form γ jM jci mod mi for j < i, with ci’s are defined in (2.4),
can be evaluated without preceding modular reduction of γ j since γ j < mi. The same
argument applies to updating Mi’s.

Sadly, this solution does not work when the “capacities” of a CUDA thread block
are exceeded because threads need to work cooperatively. As a consequence, we cannot
process more than 1024 31-bit residues in the edge case (limited by the maximum block
size on Fermi GPUs). To deal with this limitation, we could take advantage of instruction-
level parallelism by letting each thread process several residues at a time, as we did it
in Section 4.2.3 for the interpolation algorithm. However, this solution would show very
bad occupancy due to the fact that, now, the number of working threads decreases in each
iteration. To figure out an optimal solution, we observe that, in most extreme practical
cases, the involved integer quantities do not exceed 90–150 thousand bits in length, which
corresponds to 3–5 thousand 31-bit moduli. Hence, we propose to split the inputs in
chunks (of size m_chunk to be defined later) and compute the MR digits in a loop by
one thread block. This solution is a good compromise between a more general approach
based on block-level parallelism (where the computation is distributed over several thread
blocks) since we save on global memory transfers, and a simple parallel algorithm whose
drawbacks are outlined above.

Figure 4.8 (right) sketches the idea of our approach whose geometric interpretation
is to “cover a triangle” using two shapes (subroutines): MRC_stairs and MRC_block.
The algorithm requires m_chunk threads per block to be run on the GPU; the pseudocode
is given by Algorithm 4.2. The first subroutine (MRC_stairs) has essentially the same
outline as the naive approach shown in Figure 4.8 (left). The main difference is that,
currently, we process twice as many digits per thread which also explains the shape of
MRC_stairs in the figure. By assigning threads as shown in Figure 4.8 (right), we ensure
that all threads are occupied in each step (except the very last one). The purpose of the
procedure MRC_block is to (optionally) preload and update a set of m_chunk MR digits
using the digits computed in the preceding MRC_stairs call(s).

Since the number of processed chunks needed for MRC_block calls increases in the
course of the algorithm, the main challenge here is where to store the constantly growing
amounts of data. Indeed, if we simply keep on allocating the data in registers/shared
memory space, eventually all multiprocessor resources will be exhausted and the kernel
launch will abort with the failure. On the other hand, we do not want to completely give up
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Algorithm 4.2 MRC block algorithm (GPU part)
1: procedure mrc_block_alg( chunk[0 . . . n_chunks − 1] )
2: MRC_load(chunk[0], chunk[1]) . load the first two chunks
3: for i = 0 to n_chunks − 1 do
4: MRC_stairs(chunk[i], chunk[i + 1])
5: if (i < n_chunks − 1) then
6: MRC_load(chunk[i + 1]) . preload the next chunk
7: fi
8: for j = 0 to i − 1 do . update a new chunk ‘i + 1’ using the previous ones
9: MRC_block(chunk[i + 1], chunk[j])

10: od
11: od
12: MRC_stair_last(chunk[i + 1])
13: end procedure

on the advantages of using fast register/shared memory while, in many cases, only a few
chunks of data would be needed. We solve this problem by parameterizing the kernel with
the number of chunks while leaving the parameter m_chunk flexible. When the number
of chunks is small, all data is stored in register space and shared memory. By reaching
a certain threshold, the data is to be placed in GPU’s local memory.1 The selection of a
concrete kernel specialization depends on the actual number of moduli, and is based on
heuristics favoring small thread blocks to large ones by adjusting the parameter m_chunk.

In summary, with our “chunk” approach we are no longer constrained by the hard-
ware limitations on the size of a thread block, and can potentially process any number of
residues. Besides, this approach provides us a greater control over the occupancy since,
compared to the naive algorithm, the work is now distributed more evenly between threads
and the chunk size can be chosen appropriately in each particular case.

4.4 Resultants of bivariate polynomials
This section covers the main realization details of the modular resultant algorithm on the
GPU. We begin with a high-level structure of the algorithm, and clear up the question
how to deal with non-strongly regular Sylvester’s matrices raised in Section 3.2.1. Then,
we go through the realization of each GPU kernel separately. For the original works on
the bivariate resultant computation, we refer to (Eme10c, Eme10b), see also (Eme10a).

4.4.1 High-level structure
At the highest level, our approach is based on Collins’ modular algorithm as given in Sec-
tion 2.4.3. We recall steps of this algorithm applied to bivariate polynomials f , g ∈ Z[x, y]:

(a) apply modular homomorphism reducing the coefficients of f and g modulo suffi-
ciently many primes: Z[x, y]→ Zm[x, y];

(b) for each modular image, choose a set of points α(i)
m ∈ Zm and evaluate the polynomials

at x = α(i)
m (evaluation homomorphism): Zm[x, y]→ Zm[x, y]/(x − α(i)

m );

1Observe that, on Fermi all accesses to local memory are cached.
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(c) compute a set of univariate resultants in Zm[x] using the matrix-based approach (Sec-
tion 3.2.1): resy( f , g)|α(i)

m
: Zm[x, y]/(x − α(i)

m )→ Zm[x]/(x − α(i)
m );

(d) interpolate resultant polynomial for each prime m using the matrix-based approach
(Section 3.2.2): Zm[x]/(x − α(i)

m )→ Zm[x];
(e) lift the resultant coefficients by means of Chinese remaindering (Section 4.3.4):
Zm[x]→ Z[x].

Steps (a)–(d) and partly (e) are implemented on the graphics processor, thereby minimiz-
ing the amount of work on the host machine. In essence, what remains to be done on
the CPU is to convert the resultant coefficients from the mixed-radix representation to
positional number system.

The number of primes and evaluation points needed by the algorithm can be estimated
using Hadamard’s bound on resultant’s height and degree, see Section 2.4.3. We also refer
to (Mon05) where some practical methods are outlined: for instance, one can compute the
bounds over columns and rows of Sylvester’s matrix, and then pick up a minimal one. As
noted in Section 2.4.3, another possibility to obtain good bounds is to use the theory of
sparse resultants as it can be shown that Sylvester’s resultant of two polynomials is a
special case of a more general mixed sparse resultant. In vague terms, the idea behind this
method is to consider the geometry of the Newton polytopes of original polynomials to
obtain sharp estimates. Yet, this topic is largely beyond the scope of this work. We refer
to (CLO98, Chapter 7) for some basic facts and to (Som04) for the height of a mixed
sparse resultant.

To recover the resultant from its homomorphic images, we have to deal with “un-
lucky homomorphisms”. Although, Theorem 2.4.6 in Section 2.4.3 provides some mild
requirements on selecting the homomorphic images, in the realization we use only those
homomorphisms that do not cause the leading coefficients of either polynomial to vanish
because this simplifies the recovery process. Dealing with “bad” primes is easy: we can
discard them right away during the initial modular reduction of polynomials. To account
for “bad” evaluation points, we propose to run the algorithm with an excess amount of
points (typically 1–2% more than required). Thus, if the algorithm breaks down for some
α(i)

m ∈ Zm, we simply ignore the result and take another evaluation point. This situation
is easily detectable since “bad” evaluation points produce a zero denominator lres (see Al-
gorithm 3.1 in Section 3.2.1). In a very unlucky case, when we cannot reconstruct the
resultant due to the lack of points, we restart the algorithm to compute the extra infor-
mation. Note that, the algorithm may also fail due to non-strong regularity of Sylvester’s
matrix. This situation is considered next.

4.4.2 Dealing with non-strong regularity

Here, we outline some practical ways how to prevent the algorithm’s failure. First, remark
that, non-strong regularity indicates a presence of some non-trivial relation between poly-
nomial coefficients which occurs quite rarely in practice. Moreover, the majority of such
situations can be handled in exact same way as “bad” evaluation points.1 Indeed, if the

1In fact, both non-strong regularity of Sylvester’s matrix and “bad” evaluation points yield a zero de-
nominator lres in Algorithm 3.1, and therefore are not distinguishable from the algorithm’s perspective.
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computation fails for some point α(i)
m , there is, in general, a large set of other evaluation

points to select from. Consider the following example:

f = y8 + y6 − 3y4 − 3y3 + (x + 6)y2 + 2y − 5x,

g = (2x3 − 13)y6 + 5y4 − 4y2 − 9y + 10x + 1.

Then, for α = {0, . . . , 100000}, Sylvester’s matrix of f (α, y) and g(α, y) is non-strongly
regular only for a single point α = 2. However, the problem occurs if, for polynomials
f , g ∈ Z[x, y], some minors of Sylvester’s matrix S (y) (defined in Section 2.4.1) vanish
identically. According to large empirical evidence, it mostly happens when one of the
polynomials has a zero trailing coefficient. This can be exemplified as follows. Let

f = y8 + (4x2 − 12)y6 + (12x3 + 2)y4 + (20x4 − 28x2 + 12)y2 − 18x4 − 3,

and g = f ′y (the first derivative of f w.r.t. the variable y). Hence, we have: g0 ≡ 0
and every second principal minor of S (y) (skipping the first seven) vanishes identically.
One simple way to fix this is to consider the resultant of swapped polynomials, i.e.,
take resy( f , g) = − resy(g, f ). Indeed, in the example above, the matrix S (y) for g and
f (swapped) is strongly-regular. Although, sometimes this does not work. A more gen-
eral approach is to divide out a factor y of g (which causes the algorithm to break down),
compute the “reduced” resultant, and then compensate for the factor y. In other words,
suppose f0 , 0 and g = h · yk (k > 0), then it holds that:1

resy( f , g) = resy( f , h) · f k
0 .

Our long-term practical experiences show that the above two cases cover 99% of all
“bad” situations. However, in “extremely pathological” cases, when neither of the above
works, we can further exploit the properties of the resultants in the attempt to “randomize”
Sylvester’s matrix. For example, consider the following:

resy( f , g) = resy(h, g) if h = f + g · q, and degy h = degy f ,

resy( f , g)2 = resy( f 2, g) = resy( f , g2).

In the latter case, we also need to compute a polynomial square root to extract the actual
resultant which can be achieved by a linear-time algorithm.

4.4.3 Realization
Schematic view of the algorithm running on the GPU is depicted in Figure 4.9. The
computations start on the host machine, where we search and remove “bad” primes from
the moduli set, that is, the primes dividing the leading coefficients of input polynomials.
Then, the control is transferred to the GPU executing six CUDA kernels corresponding
to the steps of Collins’ modular algorithm. The kernels are listed with the respective grid
and block configurations in the figure; we next proceed with an in-depth discussion of
each of them.

1Here we assume that the polynomials are coprime in Z[x, y] which implies that f0 , 0.
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Figure 4.9: Structure of the modular algorithm running on the GPU. Abbrev.: S: total number of scalar
coefficients of both polynomials; N: number of moduli; M: number of evaluation points.

As a general remark, in our implementation we have used a number of standard op-
timization techniques: some of them were already mentioned in Section 4.1.3. These
techniques, for example, include constant propagation via templates, loop unrolling, ex-
ploiting warp-level parallelism, declaring frequently used local variables with volatile
keyword, giving the preference to small thread blocks instead of the large ones, etc. Be-
sides, we have also specified launch bounds for each GPU kernel. The latter technique
alone gave us about 30% additional speed-up. Lastly, we keep the moduli set and corre-
sponding reciprocals (inv) needed by the modular arithmetic (see Section 4.3) in constant
memory space. The reason for this is because, each GPU kernel in Figure 4.9 (except the
MRC kernel) uses one modulus per thread block for all computations. As a result, all
threads of a block read from the same address which generates a single memory request
which goes through constant memory cache (see also Section 4.1.2). Besides, a direct
access from constant memory has a positive effect on reducing register usage.

Modular reduce kernel. The first ‘mod.reduce’ kernel performs modular reduction of
polynomial coefficients. The grid configuration is chosen to be S × N/64, where S is a
total number of scalar coefficients of both polynomials and N is the size of moduli set. In
other words, we partition the moduli set in chunks of size 64 primes each and assign one
CUDA block to compute 64 residues of some polynomial coefficient. Further details on
its realization can be found in Section 4.3.3.

Resultant kernel. Resultant kernel constitutes the core of the algorithm. We designate
one thread block to compute a univariate resultant modulo a prime mi for some evaluation
point α j ∈ Zmi . Accordingly, a grid configuration for this kernel is chosen to be N × M,
see Figure 4.9. We provide four kernel specializations for 32 × 2, 64, 96 and 128 threads
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Figure 4.10: The workflow of the univariate resultant algorithm running with 6 threads indexed by TID

per per block. The number of threads depends on the degree of input polynomials.1 A
kernel with P threads handles polynomials with the degree range [P/2, . . . , P − 1].

First, the input polynomials are evaluated at x = α j. We use simple Horner’s scheme
where each thread iteratively computes one coefficient of f (α j, y) and g(α j, y). Next, we
run the resultant algorithm (Algorithm 3.1) derived in Section 3.2.1. The algorithm maps
quite straightforwardly to the GPU: the outer loop is split up in “lite” and “full” iterations
while the inner loop is vectorized. In other words, we associate one thread with four
data elements: (ai,bi) and (ci,di) which correspond to one row of each of the matrices
G = (a,b) and B = (c,d). In each iteration, the current top generator rows are shared
between all threads. Then, each thread applies the rotation formulas from Section 3.1.3,
implemented as a sub_mul_mod operation (see Section 4.3), to its data elements. At the
end, the first columns a and c are “shifted down” preparing for the next iteration, and
resultant factors are saved in shared memory. One step of the algorithm during “full”
iterations is depicted in Figure 4.10.

For “lite” iterations, we also unroll the outer loop by the factor of two for higher arith-
metic intensity, so that one thread now processes two rows of each of matrices G and
B. In this way, we double the maximal degree of polynomials that can be handled, and
ensure that all threads are occupied. Besides, at the beginning of “full” iterations, we can
guarantee that at least half of threads are busy in the corner case (d = P/2). Observe that,
the number of working threads decreases with the length of the generators in the outer
loop. Therefore, we use load balancing strategy to improve thread occupancy: when at
least half of threads enter the idle state, we switch to another subroutine where the com-
putations are structured in such a way that threads only do a half of a job. Finally, once the
length of the generators descends below the warp boundary (32), the remaining algorithm
steps are performed without synchronization points since warp, as a minimal scheduling
entity, does not need to be synchronized. Finally, the product of all resultant factors (as
well as the product of the denominators lres) is computed using the “warp-sized” parallel
reduction algorithm discussed in Section 4.2.2.

Modular inverse 1 and stream compaction kernel. The purpose of this kernel is to divide
the resultants computed in the previous step by respective denominators lres (see Algo-

1The first kernel with 32 × 2 threads computes two resultants at a time.
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Figure 4.11: Stream compaction across several thread blocks, ‘x’ marks elements being eliminated.
Results for each block are written back to global memory in unspecified order.

rithm 3.1), and eliminate “bad” evaluation points.1 For each modulus mi, we partition
the set of resultants in 128-element chunks and assign one chunk to a block having 128
threads. The kernel is launched on a grid of size N × M/128, see ‘mod.inverse1’ in Fig-
ure 4.9. Division is performed using Montgomery modular inverse algorithm, see List-
ing 4.7.

“Bad” evaluation points are discarded using a stream compaction algorithm. Our real-
ization is based on the following observations. 1. The number of evaluation points M can
be quite large (generally on the order of 1–3 thousand), hence it is inefficient/infeasible
to process all of them by one CUDA block. 2. Running hierarchical stream compaction
in global memory (several kernel calls) does not pay off because “bad” evaluation points
occur quite rarely on the average.2 3. The actual order of evaluation points does not
matter for interpolation. Keeping that in mind, we have found the following solution op-
timal: Each block runs the stream compaction algorithm on its 128-element chunk using
warp-sized prefix sum in shared memory (see Section 4.2.2). This algorithm computes
exclusive all-prefix-sums of a sequence of 0’s and 1’s where 0’s correspond to elements
being eliminated. The resulting sequence is then used as a “relocation map” to move all
valid elements to new locations in shared memory, see (BOA09). Note also that, on Fermi
we can use ballot voting primitive and popc intrinsic to compute the prefix sum of 0’s and
1’s more efficiently, see also (Eme10a).

Finally, the “scanned” sequence of evaluation points is written back to global mem-
ory. The current writing position is controlled by a global variable which gets updated
(atomically) each time a block outputs its results to global memory, see Figure 4.11.

Interpolation kernel. Interpolation kernel implements Algorithm 3.2 from Section 3.2.2.
Its realization has already been discussed in Section 4.2.3 as part of our case study. There-
fore, we only highlight the main features of the algorithm. Here, one CUDA block is
dedicated to interpolating a polynomial modulo some prime mi. Similar to the resultant
kernel, the inner loop of the algorithm is vectorized. Since the interpolation algorithm is
simpler than that of resultants, one thread is now assigned to process two or four rows
(depending on the number of evaluation points M) of the generator matrix G = (a,b). In
each iteration we update M relevant entries of G in a “sliding window” fashion.

The number of threads per block is chosen to depend on the number of evaluation

1Those are the points for which the algorithm returns a zero denominator lres either due to “unlucky”
homomorphism or because of non-strongly regular Sylvester’s matrix, see Section 4.4.2.

2According to extensive experiments, every 3–4 evaluation points out of 10–50 thousand are typically
“bad” for random polynomials.
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points M. As a consequence, the maximal degree of the resultant polynomial is limited
to 2048 on Tesla and 4096 on Fermi GPUs which corresponds to the maximal number
of threads per block on the corresponding GPUs. According to our experiences, these
limitations satisfy the demands of most practical applications. For reasons of efficiency,
we have also parameterized the kernel by the “data parity”: in other words, by M mod 2
or M mod 4 depending on the loop unrolling factor, instead of the data size itself. By pa-
rameterizing the kernel in such a way, we can substantially reduce branching and register
usage inside the algorithm which has a positive effect on performance, see Section 4.2.3.

Modular inverse 2 kernel. In this kernel, ‘mod.inverse2’ in Figure 4.9, we precompute
the modular inverses for subsequent division of polynomial coefficients by respective de-
nominators lint computed by the interpolation algorithm. The realization is rather straight-
forward and closely resembles the ‘mod.inverse1’ kernel considered above (with the ex-
ception that the stream compaction is no longer required). We, therefore, skip further
discussions of this kernel.

MRC kernel. The remaining MRC kernel reconstructs the integer coefficients of a re-
sultant polynomial in mixed-radix representation. Before computing the MR digits, we
also multiply each resultant coefficient by the modular inverse of some denominator lint

computed by preceding ‘mod.inverse2’ kernel. The MRC kernel is launched on a grid of
size M × 1 such that all resultant coefficients are processed in parallel. For the algorithm
description, we refer to Section 4.3.4. Finally, the computed MR digits are uploaded
back to the host machine where the actual large integer coefficients are reconstructed by
evaluating the Horner’s scheme.

In the next section, we examine the performance of the GPU algorithm by comparing
it with a CPU-based approach.

4.4.4 Experiments

To run the experiments, we have used a desktop with 2.8GHz 8-Core Intel Xeon W3530
(8 MB L2 cache) CPU and GeForce GTX580 graphics card. To recover large integer co-
efficients from the mixed-radix representation, we have employed GMP 5.0.1 library.1 As
a contestant we have chosen a host-based resultant algorithm from 64-bit compilation of
Maple 14.2 The reason why we have chosen this algorithm is because Maple’s implemen-
tation of Collins’ approach is known to be one of the most efficient among CPU-based
algorithms. Furthermore, we are not aware of any matured GPU-based resultant algorithm
available to date. In should be noted that for polynomials with integer coefficients Maple
has a built-in implementation of the resultant algorithm. In other words, this algorithm
is not written in a high-level Maple’s language but is available in a precompiled binary
form. To be precise, Maple implements probabilistic approach due to (Mon05) which,
in many cases, can significantly reduce the computation times since it does not rely on
the theoretical upper bounds for the number of homomorphic images. Finally, remark
that this version of Maple can take advantage of multiple CPU cores available on the host

1http://gmplib.org
2kernelopts(wordsize) returns 64 which verifies 64-bit Maple.
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# Configuration degree GPU Maple # blocks

1-2. degx/y(f) : {7, 20}
degx/y(g) : {11, 16}
(sparse) bits : 32 / 300 548 / 548 0.016 / 0.174 1.16 / 11.9 353 × 628

3-4. degx/y(f) : {40, 19}
degx/y(g) : {39, 17}
(dense) bits : 32 / 100 1664 / 1664 0.066 / 0.189 6.9 / 16.6 122 × 1519

5-6. degx/y(f) : {12, 62}
degx/y(g) : {10, 40}
bits : 24 (sparse / dense) 1107 / 2777 0.146 / 0.498 11.9 / 45.7 96 × 2902

7-8. degx/y(f) : {40, 31}
degx/y(g) : {30, 20}
bits : 100 (sparse / dense) 1689 / 2432 0.294 / 0.486 28.3 / 57.5 174 × 2491

9-10. degx/y(f) : {10, 80}
degx/y(g) : {10, 90}
bits : 32 (sparse / dense) 1736 / 3210 0.854 / 1.94 78 / 189 187 × 1784

11-12. degx/y(f) : {20, 60}
degx/y(g) : {23, 75}
(sparse) bits : 32 / 200 2981 / 2981 1.11 / 7.0 114 / 663 888 × 3032

13-14. degx/y(f) : {42, 31}
degx/y(g) : {33, 23}
(dense) bits : 24 / 400 2027 / 2027 0.096 / 1.93 12.7 / 201 705 × 2109

15-16. degx/y(f) : {20, 41}
degx/y(g) : {11, 29} 247 / ?
bits : 900 (sparse / dense) 1011 / 2910 3.9 / 14.3 (> 15 min) 2045 × 2854

Table 4.3: Computing the resultant of f and g w.r.t. the variable y (in seconds). 1st col.: instance
number; 2nd col.: degx/y: degree in variables x and y, resp.; bits: coefficient bitlength; sparse/dense:
varying density of polynomials; 3rd col.: resultant degree; last col.: grid configuration of the resultant
kernel (N ×M)

machine which can be verified using ‘kernelopts(multithreaded)’ command. In our case,
the number of CPU cores in use is set to 8 by default.

For the benchmarks, we have varied several parameters of input polynomials including
x- and y-degree, coefficient bitlength and density (the number of non-zero coefficients).
The results are listed in Table 4.3. All timings are given in seconds. In the table, each
configuration (2nd column) corresponds to the pair of experiments where the varying pa-
rameter, which is either the bitlength or polynomial density, is written with a slash ‘/’.
Accordingly, the running times for each experiment separately are also written with a
slash. For the GPU timing (4th column), we have accounted for all stages of the algo-
rithm including the modular reduction and recovering the integer coefficients on the host
machine. The last column ‘# blocks’ specifies a grid configuration used by the resultant
kernel, cf. Section 4.4.3. Note that, the GPU algorithm has been configured to use 31-bit
modular arithmetic optimized for Fermi processors (Section 4.3.1). Benchmarks using
24-bit modular arithmetic can be found in (Eme10b).

From Table 4.3, we see that the parallel algorithm achieves about 50–100x speed-up
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Figure 4.12: Running time versus coefficient bitlength (left); and polynomial y-degree (right)

over the host-based approach. Looking at the timings more carefully, one can see that
Maple’s algorithm performs better for sparse polynomials which implicitly indicates that
it uses the PRS algorithm (Section 2.4.2) in its core while our matrix-based approach
is insensitive to the density parameter. On the other hand, our algorithm is faster for
polynomials of high x-degree. This is expected because, with the x-degree, the num-
ber of thread blocks increases leading to better hardware utilization, while the size of
Sylvester’s matrix stays the same (since we compute the resultant w.r.t. the variable y). On
the contrary, increasing the y-degree penalizes the performance as it causes the number
of threads per block to increase. Similarly, for larger coefficient bitlengths, the attained
performance is typically better, again, due to the increased degree of parallelism. Two
graphs in Figure 4.12 examine the running time as a function of the coefficients bitlength
(left) and polynomials y-degree (right) while keeping other parameters fixed. Increasing
the bitlength only affects the number of primes used by the algorithm while the number
of evaluation points remains the same. Accordingly, we have a clear linear dependency
of the running time on the coefficient bitlength. A different situation is observed when we
change the y-degree of polynomials. This has an impact on both the number of primes
and evaluation points, therefore performance scales quadratically in the right diagram.
Also, notice a jump of the running time between the y-degrees 90 and 100: this is caused
by the fact that algorithm switches to another instantiation of the resultant kernel (the one
with 128 threads per block) when all thread resources are exhausted, see Section 4.4.3.

A histogram in Figure 4.13 depicts a relative contribution of different stages of the
algorithm to the overall time. The numbers along the x-axis correspond to the configura-
tions in Table 4.3. Apparently, the time for the resultant kernel, ‘resultant’ in the figure, is
dominating since this kernel has the largest grid size among others (see Figure 4.9). The
second largest time is either for reconstructing the large integers on the host ‘MR recover’
(in case of large coefficient bitlength) or polynomial interpolation (for high polynomial
degrees). The fact that ‘MR recover’ stage can occupy almost the half of the total running
time is a bit surprising considering the relative simplicity of the involved computations.
Therefore, we think about moving this stage to the graphics processor as well.

As a general remark, we have observed that even for polynomials with moderate de-
gree, our algorithm reaches hardware saturation very fast since the complexity of com-
puting resultants increases rapidly with the input parameters. A clear indication for this

114



4.4 Resultants of bivariate polynomials

 0

 0.2

 0.4

 0.6

 0.8

 1

3 2 6 10 12 15

mod.reduce
resultant

mod.inverse
interpolate

MRC
MR recover

Figure 4.13: Relative contribution of different stages to the overall time for configurations taken from Ta-
ble 4.3

is the number of thread blocks used by the resultant kernel which is given in the last col-
umn of Table 4.3. Besides that, due to high arithmetic intensity of computations, the time
for GPU–host memory transfer was negligibly small for all instances we have tried.1 In
total, this confirms that our implementation is not memory-bound, and thus has a great
scalability potential on future generation GPUs having more physical processors.

Still, there is a number of things we wish to improve about the algorithm. First, as
mentioned above, there is a large performance benefit in further reducing the amount of
work to be done on the host side, even if this is related to performing some “heavy” com-
putations, such as large integer arithmetic, on the graphics processor. Second, the current
implementation limits the degree of polynomials in the main variable2 to 128, while the
degree of the resultant polynomial is limited to 4096. Although, such limits are wide
enough for a broad range of applications, this might not be sufficient in a long term per-
spective. These constraints are due to the fact that, at the current stage of development,
our algorithm does not exploit block-level parallelism on the graphics card. The final
solution should follow the same outline as a block GCD algorithm considered in Sec-
tion 4.5.2. Lastly, the graphics hardware evolves very dynamically over the past decades,
and new programming features are released every six months. As a result, it is always a
challenge to keep the implementation up-to-date with respect to the modern development
trends. For example, it appears to be very promising to use concurrent kernel execution
supported by Fermi processors. In essence, this feature enables several CUDA kernels to
be active at the same time on the GPU. Thus, it is possible to further reduce the running
times by launching CUDA kernels asynchronously while the previous GPU calls are not
finished yet and, thereby, achieve a partial overlap in computations (provided that, we can
arrange the computations in such a way that there is no data dependency between them).

1We allocate page-locked host memory to speed up GPU–host memory transfers.
2The one with respect to which the resultant is computed.
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4 Realization and experiments

4.5 Univariate GCD computation
Our realization of the modular GCD algorithm was primarily oriented to computing a
GCD of univariate polynomials where the emphasis is put on supporting arbitrary large
polynomial degrees and very large coefficient bitlength. The main motivation for this was
that the typical applications, such as the solution of systems of polynomial equations, are
heavily based on univariate GCD computation, while computing a GCD of multivariate
polynomials can, in many cases, be avoided using various filter techniques. The sec-
ondary reason for this was the “proof of concept”, in the sense that, we wished to verify
whether block-level parallelism (supported by the GPU) can be integrated in the matrix
factorization algorithm (see Section 3.1.2).

We start with a general description of the algorithm. Next, we outline some practical
ways to estimate the number of homomorphic images required by the modular approach.
Finally, we discuss the GPU part of the algorithm in detail. For the conference paper
describing the original work, we refer to (Eme11).

4.5.1 Algorithm design and improved GCD bounds
From a high-level perspective, our algorithm uses the ideas of Brown’s modular algo-
rithm introduced in Section 2.3. For univariate polynomials f , g ∈ Z[x], this algorithm
comprises three steps:

(a) apply modular homomorphism reducing the coefficients of f and g modulo suffi-
ciently many primes: Z[x]→ Zm[x];

(b) compute a set of univariate GCDs in Zm[x] using the matrix-based approach (Sec-
tion 3.2.3): gcd( f , g) mod m : Zm[x]→ Zm[x];

(c) lift the coefficients of a GCD using Chinese remaindering (Section 4.3.4):
Zm[x]→ Z[x].

Similar to the resultant computation, we outsource the steps a, b and partly c to the graph-
ics processor leaving the final conversion of GCD coefficients from the Mixed-radix to
conventional representation to the host machine since the latter step involves computa-
tions with large integers.

One of the challenges we have been faced with during the initial algorithm’s design
was estimating the number of primes required to reconstruct a GCD polynomial. Re-
member that the idea of Brown’s algorithm is to use “intuitive bounds” (instead of the
worst-case bounds) to compute the number of homomorphic images, provided that the
validity of the results can later be verified using trial division (see Section 2.3.2). This
trick, however, requires processing the homomorphic images incrementally. While, in the
parallel setting, we certainly do not want to abandon a great deal of parallelism for the
sake of incremental processing. More important, it would not be possible to perform a
trial division directly on the GPU (unless we come up with another modular algorithm),
and hence the division check might become a major performance bottleneck. Altogether,
this prompted us to search for alternative bounds on the height of a GCD. Luckily, in the
univariate case, there is a number of methods to obtain good estimates in practice (which,
however, do not improve the asymptotic bound). We discuss some of these methods here.
An interested reader may also consult a recent survey paper (Abb09).
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4.5 Univariate GCD computation

In what follows, let f ∈ Z[x] be a polynomial of degree n and h ∈ Z[x] be its divisor
of degree δ ≤ n. If δ is known, we can apply degree-aware bounds which, sometimes,
are much better than the usual estimates. Among them, the most interesting one is the
Binomial bound. The bound is (for 0 ≤ i ≤ δ):

|hi| ≤ ĥi, where ĥ(x) = | lcf(h)|(x + ρ)δ, (4.1)

and ρ is the upper bound for the magnitude of any complex root of f . Observe that,
lcf(h) is easily obtainable, if we know that h is a GCD. The next one is the refinement of
Mignotte’s bound (Mig74), saying that:

|h|i ≤
(
δ

i

)
M( f ) ≤

(
δ

i

)
| f |2, (4.2)

whereM( f ) denotes the Mahler measure of f . The third one is the Knuth-Cohen bound
published in (Knu97):

|h|i ≤
(
δ − 1

i

)
| f |2 +

(
δ − 1
i − 1

)
| lcf( f )|. (4.3)

As a rule of thumb, neither of these bounds is favorable in different situations, and hence
a combination thereof works best in practice. Also, in (Abb09), the reversal trick is pro-
posed which is based on the property that polynomial multiplication and reversal com-
mute. In other words,

if f = g1g2, then f = g1g2,

where f is a polynomial whose coefficients order is reversed. Meaning that, a bound
for the i-th coefficient of h is also valid as a bound for the (δ − i)-th coefficient of h and
vice a versa. Hence, the idea is to simply compute the two sets of bounds for individual
coefficients, and then pick up the minimal ones. This trick, in particular, can greatly
improve the accuracy of the Binomial bound (4.1) when the trailing coefficient of a GCD
is small. It can also be used in combination with (4.3), while Mignotte’s bound (4.2) is
invariant under reversal.

4.5.2 Realization: overview
In the light of the previous discussion, we suggest the following outline of the GPU al-
gorithm: start with the number of primes given by the height of the original polynomials
(this is enough in the vast majority of situations). Then, once the modular GCDs are
computed, apply degree-aware bounds and enlarge the moduli set if needed. To deal with
“unlucky” homomorphisms, we first scan the set of primes on the host machine eliminat-
ing those ones that divide the leading coefficients of either polynomial. Next, once the set
of modular GCDs is available, we perform the degree anomaly check (cf. Theorem 2.3.1)
using stream compaction algorithm to discard those modular images which have a degree
higher than that of the others. Note that, in the real implementation, we also employ a
modular filter to quickly detect coprime polynomials. The idea is rather simple: at the
beginning, we invoke the whole algorithm for a single prime to test if the degree of the
resulting GCD image is zero. If so, we conclude that the polynomials are coprime and the
algorithm can be terminated prematurely. Otherwise, the computations are repeated with
a full set of moduli.
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4 Realization and experiments

Figure 4.14: High-level view of a GCD algorithm. Abbrev.: S: total number of scalar coefficients of both
polynomials; N: number of moduli; B: number of thread blocks per modular GCD, see Section 4.5.4.

A block-diagram of the algorithm is shown in Figure 4.14. Each GPU kernel in the
diagram is specified with corresponding grid and block configurations. The first kernel,
‘mod.reduce’, performs modular reduction of polynomial coefficients using the algo-
rithm in Section 4.3.3. The set of primes is partitioned in chunks of 64 primes each, so
that a single CUDA block is assigned to computing 64 residues of one polynomial coef-
ficient. Here, threads do not need to cooperate with each other, and therefore, in terms
of performance, it is better to keep the block size small. The second GCD kernel, com-
puting the image GCDs, constitutes the core of the algorithm. We consider its realization
separately in the next section. Additionally, in this kernel we accumulate a minimal GCD
degree over all modular images using CUDA atomic primitives in preparation for the
degree check.

The next ‘mod.inverse’ kernel is responsible for calculating the modular inverses of
GCD’s leading coefficients for each modular image (see line 27 in Algorithm 3.3). The
implementation uses Montgomery modular inverse algorithm as given in Section 4.3.2.
The input is processed in chunks of size 64, thus a grid configuration is set to N/64 × 1
with N being the number of moduli. Besides, in ‘mod.inverse’ kernel we count the
number of “unlucky” primes by comparing the degree of GCD images with the minimal
degree computed in the previous step. If the degree-aware bounds (calculated on the CPU)
suggest that the number of primes (not counting “unlucky” ones) still suffices to recover
the result, we proceed to the next step. Otherwise, the algorithm is restarted with enlarged
moduli set.

The remaining ‘MRC kernel’, discussed in Section 4.3.4, computes the mixed-radix
representation of GCD coefficients. In this kernel, we also eliminate the previously de-
tected “unlucky” primes using a stream compaction algorithm. Its realization is very simi-
lar that of ‘mod.inverse 1’ kernel, given as part of the resultant algorithm (Section 4.4.3).
Thus, we skip further remarks here. In the last step, the mixed-radix digits are evalu-
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4.5 Univariate GCD computation

Figure 4.15: Schematic view of a simple GCD algorithm running with 6 threads indexed by TID.

ated using Horner’s rule on the CPU to obtain the actual large integers. The rest of the
discussion is devoted to the GCD kernel playing a central role in the algorithm.

4.5.3 Modular GCD: details of realization
Computing a GCD in Zm[x] is done using our matrix-based approach discussed in Sec-
tion 3.2.3. To recall the notation, let G be the generator matrix of size n × 4 as defined
in (3.47), where n is the sum of degrees of the input polynomials. Provided that, the
rows of the generator matrix can be updated independently (due to data level parallelism),
one can easily conceive of a simple parallel algorithm running in OP(n, n) time (see Sec-
tion 2.5.1 for asymptotic notation). In what follows, we shall write Li

j denoting the j-th
column of the triangular factor in step i of the algorithm, which is defined as:

Li
j = aia j + bib j − cic j − did j and F i

j = Li
j − Li

j−1,

where g j = (a j, b j, c j, d j) and gi = (ai, bi, ci, di) are the two rows of G. We designate one
thread to process a single row g j, such that the inner loop of Algorithm 3.3 disappears.
Two steps of the basic parallel algorithm are illustrated in Figure 4.15. Here, the number
of occupied threads decreases by one with the size of the generator G in each iteration
of the algorithm. An iteration begins by loading the current top (leading) row of G in
shared memory to make it visible to all threads of a block. Then, each thread evaluates
Li

j and writes the results back to shared memory. Next, we shift down the first column
of the generator matrix by computing F i

j (lines 9 and 22 of Algorithm 3.3). Finally, each
participating thread updates a respective generator row which completes the iteration.
Note that, in the realization we also distinguish between “lite” and “full” algorithm steps,
as defined in Section 3.2.3, but we forget these details for the time being.

Unfortunately, with the basic approach outlined above, we again run into the problem
of limited CUDA block size since threads need to communicate in order to compute the
result, and hence they must belong to a single thread block. This problem we have already
encountered in the design of the MRC algorithm (Section 4.3.4), where the solution was
to process the data in chunks by one CUDA block. In present situation, however, this
solution is not applicable since we do not have preliminary estimates on the degree of
the input polynomials. Thus, the only adequate solution is to exploit block-level paral-
lelism: that is, to distribute the computations over numerous thread blocks. To achieve

119



4 Realization and experiments

Figure 4.16: In each step of the algorithm, the leading generator row gi is used to update all the remaining
rows gi+1, . . . , gn (top); partitioning of the generator matrix GT ∈ Z4×n; aux_set: additional matrix rows
loaded by a thread block (bottom)

this, we need to abstract away from the details and try to understand the specifics of
data movements performed by the algorithm. This can best be described graphically as
in Figure 4.16 (top). Looking at the diagram, one can see that, in order to acquire (par-
tial) independence in computations, we need to introduce some data redundancy, so that
different thread blocks can perform several steps of the algorithm without the need for
communication.

For this purpose, we partition the rows of the matrix G in chunks of size chunk_sz1

as in Figure 4.16 (bottom). The first chunk_sz rows of G will be denoted by HEAD. We
select thread block to be of size block_sz := chunk_sz · 2 threads, and assign the rows of
G to thread blocks as follows. 1. All blocks share the current HEAD. 2. Each block
has its working set which consists of block_sz rows (after skipping HEAD). 3. Another
chunk_sz rows before the working set are assigned to each block which we denote by
aux_set. For 0th block, aux_set is identical to HEAD. The aim of this data partitioning is
to run chunk_sz iterations of the algorithm without any data exchange. First, in iteration
i, we need the top row gi of Gi to compute the elements of the triangular factor Li: this
is why each block requires chunk_sz leading rows of G (HEAD). Second, during the
generator update, one computes F i

j = Li
j − Li

j−1, hence we need additional chunk_sz rows
before a block’s working set in order to have access to the “preceding” elements Li

j−1 of
Li

j’s in each step.
The core of the algorithm comprises two phases: gen_run where we prepare the

“updating sequence” using the rows of HEAD and aux_set; and update_run where this
sequence is applied to the working set. Sample workflow of the algorithm is shown in Fig-
ure 4.17 (left). As in the basic algorithm, we assign one thread to work with a single gener-
ator row gi. In the first iteration, we take the current leading row g1 and use it together with
aux_set in order to compute the columns of the triangular factors: L1

k+1, . . . , L
1
k+4. Then,

we update the subsequent rows g2, . . . , g4 of HEAD, as well as the rows gk+2, . . . , gk+4 of
aux_set. The row gk+1 is left unchanged since it requires a previous element L1

k for the
update which is not available (for this reason, gk+1 is marked with a yellow box in the fig-

1Chunk size is chosen to be divisible by 32 (warp size) for reasons of efficiency.
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4.5 Univariate GCD computation

Figure 4.17: Sample workflow of the block algorithm with block_sz = 8: first, a sequence {Li
k+4} is gener-

ated, and then applied to the working set; elements in the white boxes are not modified by the algorithm
(left). Block GCD algorithm running with several thread blocks. Each kernel call corresponds to chunk_sz
steps of the serial algorithm. Dashed arrows mark the regions in global memory where each block writes
back its results (right).

ure). We also keep L1
k+4 which is required to updating the first row gk+5 of the working set.

Analogously, in the second step, we use g2 to compute L2
k+2, . . . , L

2
k+4, and update the rows

g3, g4 and gk+3, gk+4. This time, gk+2 is only used to compute the triangular factor, and an
element L2

k+4 is saved. As one can see from Figure 4.17 (left), the rows of G are processed
in a “stair-like” fashion. At the end of gen_run, we have a full sequence L4

k+4, . . . , L
1
k+4.

In the next stage, update_run, the updating sequence is applied to the working set.
Note that, we do not need to process the rows of HEAD once again because the results
can be effectively reused from the previous stage. In each step, we take the leading row of
HEAD and extract the last element of the updating sequence to process the working set.
It can be seen as though this sequence is “pushed” onto the working set from the top: that
is, in step 1 we take L1

k+4 to compute F1
k+5, in step 2 we take L2

k+4 to compute F2
k+5, and

so on. Remark that, in each step all rows of the working set (gk+5, . . . , gk+12) get updated,
hence we achieve the full thread occupancy here.

4.5.4 Modular GCD: overall approach
Having the basic routine at hand, we can now present the overall approach working with
arbitrary number of thread blocks. From the host perspective, the algorithm consists of
several kernel calls invoking repeatedly the procedure outlined in Figure 4.17 (left), where
each kernel call is equivalent to chunk_sz steps of Algorithm 3.3. At the end of each call,
participating thread blocks save their working sets back to global memory with an offset
specified by the parameter chunk_sz. In this way, the first half of the 0th block’s working
set becomes HEAD for the next kernel call, and so on, see Figure 4.17 (right). To choose
the parameter chunk_sz, we have performed a number of experiments confirming that the
value chunk_sz = 128 works best in practice.

The host part of the algorithm is given in Algorithm 4.3. Here, we provide a template
argument to the CUDA kernel (lines 8 and 17) to distinguish between “lite” and “full”
iterations as defined in Section 3.2.3. The number of “lite” iterations is controlled by
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Algorithm 4.3 Host part of the block GCD algorithm
1: procedure gcd_host_part(Polynomial f, Polynomial g)
2: p = f.degree(), q = g.degree(), n = p + q . assume: p ≥ q
3: start_i = 0 . setup iteration counter
4: B = (p + chunk_sz)/(2 ∗ chunk_sz)
5: dim3 thids(block_sz) . # of threads per block
6: dim3 grid(N,B) . grid of thread blocks
7: while (1) { . first run “lite” iterations
8: gcd_block_kernel<chunk_sz, false>≪ grid, thids≫
9: (p_out, p_in, start_i, 0) . kernel launch

10: start_i += chunk_sz . increase iteration counter
11: swap(p_in, p_out) . “ping-pong” memory access
12: if (start_i >= q) break . finished “lite” iterations
13: }
14: ofs = (q − start_i + chunk_sz) . compute mem. ofs
15: while (1) { . run “full” iterations
16: dim3 grid(N,B) . # of blocks B decreases
17: gcd_block_kernel<chunk_sz, true>≪ grid, thids≫
18: (p_out, p_in, start_i, ofs) . kernel launch
19: start_i += chunk_sz . increase iteration counter
20: swap(p_in, p_out) . “ping-pong” memory access
21: sz = n − start_i . the current size of generator matrix
22: if (sz <= 3 ∗ chunk_sz) break . break if sz is small
23: B = (sz + chunk_sz − 1)/(2 ∗ chunk_sz)
24: }
25: . simple kernel runs the remaining iterations
26: gcd_simple_kernel≪ grid, thids≫(p_in, p_out)
27: end procedure

the counter ‘start_i’ advanced by chunk_sz in each step. We also use double-buffering –
‘p_in’ and ‘p_out’ – to prevent data corruption due to simultaneous memory access. The
kernel is launched on a 2D grid of size N × B, where N is the number of moduli and B
is the number of blocks per modular GCD. For p and q being the degrees of the original
polynomials, at the beginning of the algorithm we set:

B = (max(p, q) + chunk_sz)/(chunk_sz · 2).

This number of blocks suffices because, by looking at the matrix G in (3.47), we see that
the first two columns relevant during “lite” iterations of the algorithm have no more than
max(p, q) + 1 nonzero entries each. Note that, during “full” iterations, the parameter B
decreases every two steps of the algorithm. Here, we also have to check for the vanishing
denominator which indicates that a GCD is computed (see lines 26–28 in Algorithm 3.3).
Certainly, we do not want to waste the GPU cycles here: therefore, as soon as this hap-
pens, a leading CUDA block sets up a global flag which forces all subsequent kernel calls
to quit immediately.

4.5.5 Performance evaluation
Our platform to run the experiments was pretty much the same as the one used for bench-
marking resultants: that is, a desktop machine with 2.8GHz 8-Core Intel Xeon W3530
(8 MB L2 cache) CPU and NVIDIA GTX580 graphics card running under 64-bit Linux
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configuration deg(GCD) GPU Maple

deg(f/g): 923/412, bits(f/g): 300/200 (sparse) 100 1.3 ms 56 ms

deg(f/g): 1000/400, bits(f/g): 300/200 (dense) 100 1.5 ms 104 ms

deg(f/g): 744/1126, bits(f/g): 5000/5000 (sparse) 652 20 ms 156.0 s

deg(f/g): 1599/989, bits(f/g): 140/2100 (sparse) 330 9 ms 1.9 s

deg(f/g): 2000/1500, bits(f/g): 149/2109 (dense) 500 16 ms ? (timeout)

deg(f/g): 2300/2100, bits(f/g): 35/1015 (dense) 1400 15 ms 33.4 s

deg(f/g): 3669/3957, bits(f/g): 3000/2000 (-) 3257 70 ms 3.0 s

deg(f/g): 4900/4900, bits(f/g): 46/46 (dense) 2500 43 ms 0.55 s

deg(f/g): 10000/10000, bits(f/g): 162/165 (-) 5000 0.24 s 81.7 s

deg(f/g): 10000/10000, bits(f/g): 3733/768 (-) 5000 1.03 s 82.0 s

Table 4.4: Benchmarks for single GCDs. deg(f / g) and bits(f / g): degrees and coefficient bitlength of
the input polynomials f and g, respectively.

platform. Large integer arithmetic has been provided by Gmp 5.0.1 library.1 Again, our
main contestant was the modular GCD algorithm from 64-bit compilation of Maple 14.2

Maple’s implementation of a GCD algorithm is built-in for integer polynomials, and re-
lies on several algorithms selected according to the size of the inputs and other heuristics.
These algorithms, for example, include heuristic GCD, EZGCD and sparse modular GCD
algorithms, see (LF95) for comparison. For very large polynomials, Maple also employs
an asymptotically fast Half-GCD algorithm (TY90). As noted before, this version of
Maple can take advantage of multiple CPU cores present on the host machine which can
be verified using ‘kernelopts(multithreaded)’ command. In our case, the number of log-
ical CPUs in use has been set to 8 by default.

The timings for computing a GCD of two polynomials are listed in Table 4.4. Among
the input parameters, we have varied polynomial degrees, coefficient bitlength and the
density of polynomials (the number of non-zero terms). In the experiments, we have not
considered coprime polynomials since Maple as well as our algorithm provide special
means to quickly check for a trivial GCD. In general, one can see that the timings for our
algorithm are now significantly better than those published in the original work (Eme11).
The reason for this are numerous small improvements taking place throughout the whole
algorithm and, among others, because of the fact that the modular reduction has been
moved to the graphics processor (see Section 4.3.3). It turned out that the latter operation
could occupy more than a half of the total running time of the algorithm in extreme cases.
Going back to the benchmarks, we see that Maple’s GCD performs better for sparse poly-
nomials while our (matrix-based) approach is largely insensitive to polynomial density.
On the other hand, it appears that Maple has a serious trouble dealing with unbalanced
operands: that is, when two input polynomials substantially differ in the degrees or the
size of coefficients. A practical study confirms that, these situations occur quite often: for
instance, when comparing two algebraic numbers or computing the polynomial factoriza-

1http://gmplib.org
2kernelopts(wordsize) returns 64 which verifies 64-bit Maple.
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configuration N deg(GCD) GPU Maple

deg(f/g) : 500/600, bits(f/g) : 70/70 (dense) 100 50 (avg.) 7.3 ms 1.4 s

deg(f/g) : 500/600, bits(f/g) : 70/70 (dense) 200 50 (avg.) 10.7 ms 2.7 s

deg(f/g) : 500/600, bits(f/g) : 70/70 (dense) 400 50 (avg.) 24 ms 5.4 s

deg(f/g) : 900/800, bits(f/g) : 200/200 (sparse) 50 100 (avg.) 19 ms 2.9 s

deg(f/g) : 900/800, bits(f/g) : 200/200 (sparse) 100 100 (avg.) 35 ms 6.1 s

deg(f/g) : 900/800, bits(f/g) : 200/200 (sparse) 200 100 (avg.) 60 ms 14.0 s

deg(f/g) : 1800/1800, bits(f/g) : 250/30 (sparse) 50 900 (avg.) 70 ms 25.7 s

Table 4.5: The running times for computing a batch of N GCDs of random polynomials. Abbreviations
are as in Table 4.4.

tion. We anticipate that, in this case, Maple cannot correctly decide which algorithm’s
version to use which results in a huge slowdown. It is also worth noting that the perfor-
mance of Maple’s algorithm deteriorates greatly for very large polynomial degrees: here,
it could be the case that the size of a CPU cache already becomes a bottleneck.

Looking at the GPU timings, however, we can argue that the graphics hardware stays
underutilized for the most examples in Table 4.4 (though it may not seem obvious at first
glance). This stems from the fact that, in contrast to bivariate resultants, a univariate
GCD computation alone does not provide us with a sufficient amount of parallelism to
keep the GPU circuits busy all the time, and thereby cannot mitigate the negative effects
of external memory latencies. An implicit indication for this is that the running times do
not change much when going from one configuration to another. That is why, to test the
hardware at full occupancy, we have also run the experiments where a batch of GCDs of
low degree random polynomials is computed. Such “batched” GCD computations can,
for instance, be used in the solution of multivariate GCD problems with the help of the
modular approach (see Section 2.3). Altogether, the speed-up attained for a batch of
GCDs in Table 4.5 is clearly more impressive. Indeed, on the average, the GPU algorithm
requires less then a millisecond per one GCD. Here, the batch size (the number GCDs
computed) is given by the parameter N. From the table, we also see that the hardware
saturation is reached for N somewhere between 50 and 100 or between 100 and 200
depending on the configuration, since the GPU running times do not scale linearly within
this range.

In Figure 4.18, we examine the performance of the algorithm versus the polynomial’s
degree (left) and coefficient bitlength (right). In the left diagram, the dependency on the
degree is most likely to be sub-quadratic since the parallel complexity of the GPU algo-
rithm is linear by design; however, with increasing the degree, more thread blocks need
to contribute to one modular GCD. As a result, the amount of redundant work increases,
see Section 4.5.3, making the final complexity sub-quadratic. In contrast, increasing the
coefficient bitlength only causes the number of moduli to increase (or the number of in-
dependent thread blocks) which is why the performance only scales linearly in the right
figure. Figure 4.19 displays a CUDA profiler output for the GPU algorithm executed for
the last configuration in Table 4.4. In the figure, the large blue and green shapes cor-
respond to “lite” and “full” iterations of the matrix-based GCD algorithm, respectively
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Figure 4.18: Execution time vs. polynomial degree (left) and coefficient bitlength (right)

Figure 4.19: CUDA kernel statistics for testing the GCD algorithm on the last configuration in Table 4.4

(see Section 3.2.3). Here, the height plot for “full” iterations has a typical trapezoid form
because the number of working thread blocks declines in each step of the algorithm. Also,
notice that, the contribution of other stages of the modular algorithm is negligibly small
compared to the cost of the univariate GCD algorithm alone. This is a natural thing to
expect for polynomials of very high degree. On a similar note, the overhead of GPU–host
memory transfer, ‘memcpyDtoH’ and ‘memcpyHtoD’ in the profiler diagram, has no
impact on the algorithm performance indicating that the arithmetic intensity of involved
computations is sufficiently high.1

As for concluding remarks, most of the comments made at the end of Section 4.4.4
do also apply to the GCD algorithm. Specifically, we would like to mention that our
successful attempt to integrate block-level parallelism to the GCD algorithm can be used
to further improve the resultant and interpolation algorithms as well (see Sections 3.2.1
and 3.2.2), owing to the fact that they are just the particular cases of the same generalized
approach. Besides, we believe that this result has a value on its own since the factorization
of structured matrices has a wide range of significant applications which go far beyond
the polynomial algebra. Another promising task would be to extend the GCD algorithm
to multivariate domain, especially, because all the required components of the modular
approach, including evaluation/interpolation, have already been tested on the resultants.

In the next and final chapter of this thesis, we discuss two important applications of the

1Here, we we have also used page-locked host memory to speed-up data transfers.
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4 Realization and experiments

developed algorithm to see how they behave on a real data because synthetic benchmarks
might not always reveal the real strengths and weaknesses.
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5 Applications

Among possible applications of the GPU algorithms developed in this thesis, we foremost
consider the problem of computing real solutions of a system of bivariate polynomial
equations. Polynomial systems of equations arise naturally in many fields of science and
engineering and have a fundamental importance in non-linear computational geometry or
Computer-Aided Geometric Design. For this problem, we utilize a novel approach (which
we shall refer to as Bisolve) proposed quite lately at the time of writing. It demonstrates
a significant performance improvement over other state-of-the-art algorithms available to
date. One of the major strengths of Bisolve relates to the fact that it restricts a required set
of symbolic operations to that of computing resultant and GCD, and thereby can benefit
to the full degree from the developed GPU algorithms. In the course of our discussion, we
shall also analyze the complexity of Bisolve to persuade the reader that the demonstrated
high performance of the algorithm also finds a confirmation in theory.

As a second application of parallel algorithms, we address the problem of geometri-
cally correct rasterization of algebraic curves defined in R2 by implicit equations.1 Implic-
itly defined algebraic curves have proven very useful in the solution of many geometric
and model-based problems because of their ability to provide a compact representation
of complex geometric objects. It is also known that the accurate visualization of such
curves is not always feasible (or, otherwise, can be very inefficient) unless some topolog-
ical information of a curve is available. We show how to exploit the power of GPUs to
dramatically speed-up the visualization of algebraic curves.

5.1 Solution of a bivariate polynomial system

This section is devoted to the algorithm Bisolve proposed in (BES11) to computing the
real solutions of a system induced by two bivariate polynomials. Such non-linear systems
of equations, for instance, arise in the topological study of algebraic curves and surfaces,
where they are used to identify the “events points” (tangents and singularities). We give
a detailed review of the algorithm and also discuss its further development to compute
the topology of algebraic curves (BEKS11a, BEKS11b). Finally, we evaluate the per-
formance of the algorithm on a number of challenging benchmarks with and without the
GPU acceleration. The complexity analysis of Bisolve will be given separately in Sec-
tion 5.2.

1What is precisely understood by a geometrically correct rasterization will be made clear in Section 5.3.
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5.1.1 Problem definition and related work

To state the problem in a mathematically concise way, let f , g ∈ Z[x, y] be polynomials
of total degrees m and n, respectively. We further assume that f and g share no common
non-trivial factor in Z[x, y]. This is equivalent to saying that the following polynomial
system

f (x, y) =
∑

i, j∈N:i+ j≤m

fi jxiy j = 0, g(x, y) =
∑

i, j∈N:i+ j≤n

gi jxiy j = 0 (5.1)

is zero-dimensional having at most n × m solutions in C2 by Bezout’s theorem. The
algorithm Bisolve computes a set of disjoint boxes Bk ⊂ R

2 isolating all real solutions
of (5.1). In other words, the union of all Bk contains

VR := {(x, y) ∈ R2| f (x, y) = g(x, y) = 0}, (5.2)

the set of real solutions of (5.1).
For the related work, we can distinguish between two classes of algorithms. The

first class includes numeric algorithms which approximate the solution of a problem to
a certain precision, and thus cannot be regarded as “certified” and “complete” meth-
ods. The main representatives of this family are homotopy (SW05b) and subdivision
approaches (AMW08, MP09). Naturally, their major strength lies in the use of ap-
proximate computations, such as provided by the software libraries IntBits, ALIAS, Int-
Lab or MPFI, to process many instances in a very efficient way, albeit with no guar-
antees on the computed results. Though, subdivision methods can be made certifying
and complete by considering worst case separation bounds for the solutions, this ap-
proach has not been proven effective in practice so far. The second class comprises the
so-called elimination methods based on (sparse) resultants, rational univariate repre-
sentation, Groebner bases or eigenvalue computations; see, for instance, (Pet99, Stu02).
Our approach belongs to this family as well. In broad terms, the idea of these methods
is to project the solutions onto several different axes (projection step), and then match
the possible candidates using some “validation” procedure (lifting step). Recent exact
and complete implementations for computing the topology of algebraic curves and sur-
faces (BKS10, CLP+09b, EKW07, SW05a, BEKS11a) also make use of such elimination
techniques. However, recalling the example from the introduction, we see that the cost
of symbolic computations can quickly become dominating which restricts the use of such
elimination methods. To make matters worse, a system under consideration might be in
non-generic position (when there are two or more covertical solutions along some pro-
jecting direction) which significantly complicates the lifting step. In the latter situation,
the existing approaches perform a coordinate transformation (or project in generic direc-
tion) which eventually increases the complexity of the input polynomials. In this respect,
Bisolve constitutes a notable exception since, unlike the previous algorithms, its valida-
tion (or lifting) step does not involve any symbolic computations, neither it requires any
coordinate change if the given system is in non-generic position. We next introduce the
notation used throughout the algorithm description and complexity analysis.

For an interval I = (a, b) ⊂ R, we define wI := b − a to be the width, mI := (a + b)/2 the
center and rI := (b − a)/2 the radius of I. A disc in C is denoted by ∆ = ∆r(m), where
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5.1 Solution of a bivariate polynomial system

m ∈ C defines the center of ∆ and r ∈ R+ its radius. For a polynomial F(x) =
∑k

i=0 Fixi ∈

R[x], which is not necessarily square-free, with roots z1 . . . zk ∈ C, we have:

• the separation sep(zi, F) of zi is the minimal distance from zi to any root z j , zi;
• the root separation sep(F) of F defined as the minimum of all sep(zi, F);
• Σ(F) =

∑k
i=1 log sep(zi, F)−1;

• the Mahler measure defined asM(F) := | lcf(F)|
∏k

i=0 max{1, |zi|};
• Γ(F) := maxi |zi| is the maximal magnitude of any root of F.

In the algorithm description and complexity analysis, we shall also use the recursive rep-
resentation of f and g:

f (x, y) =
∑mx

i=0
f (x)
i (y)xi =

∑my

i=0
f (y)
i (x)yi, g(x, y) =

∑nx

i=0
g(x)

i (y)xi =
∑ny

i=0
g(y)

i (x)yi,

where f (y)
i , g(y)

i ∈ Z[x] and f (x)
i , g(x)

i ∈ Z[y]. By R(y) = resx( f , g) ∈ Z[x] and R(x) =

resy( f , g) ∈ Z[y] we denote the resultants of f and g with respect to variables x and y,
respectively (see Section 2.4.1). Sometimes we shall omit the variable index, simply
writing R for R(x) or R(y), if the two polynomials are interchangeable within a context. On
a similar note, a square-free part of either polynomial will be denoted by R∗.

5.1.2 Algorithm review
We next recall the main steps of the algorithm. At the highest level, Bisolve comprises
three subroutines which we consider in the order of their appearance in the algorithm.

Project : We begin with projecting the complex solutions of (5.1) onto the x- and y-axes
and consider the real ones. In other words, we take the two sets:

V (x)
C := {x ∈ C|∃y ∈ C∧ f (x, y) = g(x, y) = 0}, V (y)

C := {y ∈ C|∃x ∈ C∧ f (x, y) = g(x, y) = 0},

and compute their restrictions: V (x)
R := V (x)

C ∩R and V (y)
R := V (y)

C ∩R to the real values. The
latter operation can be achieved by computing the resultants R(y) and R(x), respectively;
and extracting the square-free parts R∗ of both polynomials. Finally, we isolate the real
roots αi of R∗ using the Descartes method, see (CA76, RZ04). It is then clear that the real
solutions VR of (5.1) are contained in the product

C := V (x)
R × V (y)

R ⊂ R
2, (5.3)

which we call a set of candidate solutions of (5.1). This completes the first step of the
algorithm. For the complexity analysis, we use a novel approach for real root isolation,
proposed in (Sag11), which we refer to as Newdsc. Newdsc is a subdivision algorithm
based on the combination of Descartes’ Rule of Signs and Newton iteration. It achieves
quadratic convergence for most iterations, and, with respect to the bit complexity, achieves
the best bound known for this problem from the works of V. Pan or A. Schönhage (see
also (Pan97) for an overview). Yet, in contrast to the above mentioned asymptotically fast
algorithms, Newdsc concentrates on the real roots only and is much easier to access and
to implement. The complexity of Newdsc is summarized in the following theorem:
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Theorem 5.1.1: Given a square-free polynomial F ∈ Z[x] of magnitude (N, µ) and an
integer L ∈ N, we can compute isolating intervals (for all real roots) of width 2−L or less
using no more than

Õ(N3µ + N2L)

bit operations. For proof, see (Sag11, Theorem 10). ♦

Note also that, in the actual implementation, we first compute a square-free factoriza-
tion (or even a full factorization) of R, instead of simply taking R∗, to facilitate the real
root isolation. Namely, we determine square-free and relatively prime factors ri ∈ Z[x],
i = 1, . . . , deg(R), such that R(x) =

∏deg(R)
i=1 (ri(x))i, where some factors ri(x) can be equal

to 1. The factorization can be computed using Yun’s algorithm (vzGG03, Alg. 14.21)
which iteratively computes the greatest common divisors of R and its higher derivatives.
This helps us reduce the costs of the subsequent real root isolation and further manip-
ulations on polynomial roots. Yet, for the simplicity of the algorithm’s description and
the complexity analysis, it suffices to use the square free part R∗ which does not alter the
algorithm in any significant way.

Separate : In the second step, we further separate the real roots of R from the complex
ones which will be needed for the validation of candidate solutions. For each root α,
we refine an isolating interval I := I(α) computed by the Descartes algorithm until the
∆8rI (mI) does not contain any root of R except α. In the implementation, we use the
quadratic interval refinement (QIR for short); see (Abb06, KS11a). This method demon-
strates high efficiency in practice due to its relative simplicity and the fact that the number
of significant bits is doubled in each refinement step as opposed to the classical bisection
method. The termination criterion of the refinement is based on the following test:

|(R∗)′(mI)| −
3
2

∑
k≥2

∣∣∣∣∣∣ (R∗)(k)(mI)
k!

∣∣∣∣∣∣ (8rI)k > 0, (5.4)

which guarantees that ∆8rI (mI) isolates a root α from all other roots of R∗, see (BES11,
Thm. 3.2) for a proof. In its turn, this enables us to compute a (non-zero) lower bound

LB(α) := 2−2 deg(R)|R(mI − 2rI)|, (5.5)

for |R(x)| on the boundary of ∆(α) := ∆2rI (mI), that is: |R(x)| > LB(α) for all x ∈ ∂∆(α).
For proof, see (BES11, Lem. 3.3).

In summary, at the end of Separate, we have a set of isolating intervals I(α) and I(β)
as well as isolating discs ∆(α) := ∆2rI(α)(mI(α)) and ∆(β) for all real roots α and β of R(y) and
R(x), respectively. Besides, we have also computed the lower bounds LB(α) and LB(β) for
the values of |R(y)| and |R(x)| on the boundary of ∆(α) and ∆(β). Finally, each real solution
of the system (5.1) is contained in some polydisc ∆(α, β) := ∆(α) × ∆(β) ⊂ C2, and each
of these polydiscs contains at most one solution.

Validate : In this last step, the candidates of C are either discarded or certified to be a solu-
tion of (5.1). For certification, we use a novel inclusion predicate to be introduced below.
Note that, in the actual implementation, the inclusion predicate is used in combination
with bitstream Descartes algorithm (EKK+05), as described in (BES11, Section 4.2), to
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5.1 Solution of a bivariate polynomial system

early exclude many of the candidates from C. Such a hybrid approach works very well
in practice. However, to keep matters simple, we shall assume that the candidate exclu-
sion is entirely based on the interval arithmetic tests which does not affect the algorithm’s
complexity.

To establish the inclusion predicate, suppose we have a polydisc ∆(α, β) and respective
lower bounds LB(α) and LB(β) as computed in Separate. First, we expand the resultants
in terms of the cofactors (see Section 2.4.1):

R(y) = u(y) · f + v(y) · g, R(x) = u(x) · f + v(x) · g, (5.6)

where u(y), v(y) ∈ Z[x, y] are determinants of “Sylvester-like” matrices U (y) and V (y) of size
(ny + my):

U (y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f (y)
my f (y)

my−1,y . . . f (y)
0 0 . . . yny−1

...
. . .

. . .
. . .

...

0 . . . 0 f (y)
my f (y)

my−1 . . . 1

g(y)
ny g(y)

ny−1 . . . g(y)
0 0 . . . 0

...
. . .

. . .
. . .

...

0 . . . 0 g(y)
ny g(y)

ny−1 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,V (y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f (y)
my f (y)

my−1 . . . f (y)
0 0 . . . 0

...
. . .

. . .
. . .

...

0 . . . 0 f (y)
my f (y)

my−1 . . . 0

g(y)
ny g(y)

ny−1 . . . g(y)
0 0 . . . ymy−1

...
. . .

. . .
. . .

...

0 . . . 0 g(y)
ny g(y)

ny−1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and u(x) and v(x) are defined in a similar way (cf. Theorem 2.4.1). We next proceed by
evaluating the upper bounds UB(α, β, u(y)) and UB(α, β, v(y)) for |u(y)| and |v(y)| on ∆(α, β),
respectively. Apparently, we wish to avoid computing the cofactors explicitly which are
usually very large expressions: instead, we can use the fact that u(y) and v(y) are given
in the determinantal form. In other words, we proceed by upper bounding the absolute
values of the entries of U (y) and V (y), and then apply Hadamard’s inequality to U (y) and
V (y) to arrive at the upper bounds for |u(y)| and |u(y)| on ∆(α, β). The upper bounds for |u(x)|

and |u(x)| are derived in analogous manner. To formulate the inclusion test we begin with
the auxiliary theorem.

Theorem 5.1.2: Let α and β be arbitrary real roots of R(y) and R(x), respectively. Then,

1. the polydisc ∆(α, β) := ∆(α) × ∆(β) ⊂ C2 contains at most one (complex) solution
of (5.1). If ∆(α, β) contains a solution of (5.1), then this solution is real valued and
equals (α, β).

2. For an arbitrary point (z1, z2) ∈ C2 on the boundary of ∆(α, β), it holds that

|R(y)(z1)| > LB(α) if z1 ∈ ∂∆(α), and |R(x)(z2)| > LB(β) if z2 ∈ ∂∆(β).

For proof, see (BES11, Thm. 3.3). ♦

The actual inclusion predicate is based on the following result.

Theorem 5.1.3: If there exists an (x0, y0) ∈ ∆(α, β) with

UB(α, β, u(y)) · | f (x0, y0)| + UB(α, β, v(y)) · |g(x0, y0)| < LB(α), (5.7)

UB(α, β, u(x)) · | f (x0, y0)| + UB(α, β, v(x)) · |g(x0, y0)| < LB(β), (5.8)

then ∆(α, β) contains a solution of (5.1) and, thus, f (α, β) = 0. ♦
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Proof Below, we reproduce the original proof from (BES11, Thm. 3.4) as it plays a
central role in the correctness of the whole approach. The main idea is to use a homotopy
argument. Namely, we consider the parameterized system

f (x, y) − (1 − t) · f (x0, y0) = g(x, y) − (1 − t) · g(x0, y0) = 0, (5.9)

where t is an arbitrary real value in [0, 1]. For t = 1, (5.9) is equivalent to our initial
system (5.1). For t = 0, (5.9) has a solution in ∆(α, β), namely, (x0, y0). The complex
solutions of (5.9) continuously depend on the parameter t. Hence, there exists a “solution
path” Γ : [0, 1] 7→ C2 which connects Γ(0) = (x0, y0) with a solution Γ(1) ∈ C2 of (5.1).
We show that Γ(t) does not leave the polydisc ∆(α, β) and, thus, (5.1) has a solution in
∆(α, β): Assume that the path Γ(t) leaves the polydisc, then there exists a t′ ∈ [0, 1]
with (x′, y′) = Γ(t′) ∈ ∂∆(α, β). We assume that x′ ∈ ∂∆(α) (the case y′ ∈ ∂∆(β) is
treated in analogous manner). Since (x′, y′) is a solution of (5.9) for t = t′, we must have
| f (x′, y′)| ≤ | f (x0, y0)| and |g(x′, y′)| ≤ |g(x0, y0)|. Hence, it follows that

|R(y)(x′)| = |u(y)(x′, y′) f (x′, y′) + v(y)(x′, y′)g(x′, y′)|

≤ |u(y)(x′, y′)| · | f (x′, y′)| + |v(y)(x′, y′)| · |g(x′, y′)|

≤ UB(α, β, u(y)) · | f (x0, y0)| + UB(α, β, v(y)) · |g(x0, y0)| < LB(α).

This contradicts the fact that |R(y)(x′)| is lower bounded by LB(α). It follows that ∆(α, β)
contains a solution of (5.1) and, by Theorem 5.1.2, this solution must be (α, β).

The inclusion predicate works as follows. Let B(α, β) = I(α) × I(β) ⊂ R2 by a candidate
box containing some candidate solution (α, β) ∈ C. Each B(α, β) is refined using the QIR
method until one of the following happens:

• we can ensure that f (α, β) , 0 or g(α, β) , 0 by evaluating the box functions
� f (B(α, β)) and �g(B(α, β)) using interval arithmetic on B(α, β), and then checking
the resulting intervals for zero inclusion. If (α, β) is not a solution, the exclusion
test must eventually succeed provided that B(α, β) is small enough. The details on
the polynomial evaluation using interval arithmetic will be given in Section 5.2.2;

• for an arbitrary point (x0, y0) ∈ B(α, β), both conditions (5.7) and (5.8) are satisfied.
In this case, Theorem 5.1.3 guarantees that (α, β) is a solution of the system (5.1).

5.1.3 Extending Bisolve to curve analysis
We next discuss how Bisolve can be extended to determining the topology of an algebraic
curve. We shall refer to this approach as BiCurveAnalysis. Recall that, a plane real
algebraic curve is defined implicitly as a zero set of a bivariate polynomial:

C = {(x, y) ∈ R2 : f (x, y) = 0}, where f ∈ Z[x, y].

We will also study such curves in greater detail in Section 5.3 in the context of accu-
rate curve visualization. For now, it is only worth noting that computing the topology
of algebraic curves belongs to the set of fundamental problems in real algebraic geome-
try with many applications in computational geometry, computer graphics and modeling.
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5.1 Solution of a bivariate polynomial system

Figure 5.1: Algebraic curve with projected “event points” (left) and its topology graph (right).

The topology of a curve C is given by a planar graph GC embedded in R2 that is isotopic
to C, see Figure 5.1. We additionally require all vertices of GC to lie on the curve C.
At the highest level, the algorithm computing a curve topology follows a classical CAD
(Cylindrical Algebraic Decomposition) approach (Col75). As before, we shall restrict
ourselves to a very concise outline because a full algorithm description, together with fil-
tering techniques and a framework for arrangement computation, falls beyond the scope
of this thesis. For the complete approach we refer to (BEKS11a). We next describe the
three main steps of the algorithm.

Projection phase. In the first step, we project all x-critical or event points (α, β) of a
curve C onto the x-axis. For such points, it holds that f (α, β) = fy(α, β) = 0. Geo-
metrically, they are exactly the points where C has a vertical tangent or is singular (see
also Section 5.3.1). Altogether, the projection phase is equivalent to the first step of the
algorithm Bisolve applied to polynomials f and fy, see Section 5.2.1 (Project), except
that we do not need to compute the projected solutions in both directions. Thus, adopting
the notation from Bisolve, at the end of this phase, we have a set I := I(α) of isolating
intervals for the real roots α of R∗, a square-free part of R(y) := resx( f , fy).

Lifting phase. Here, we first isolate the real roots of intermediate (square-free) poly-
nomials f (qI , y) ∈ Q[y], where qI is a fixed rational value chosen arbitrarily from each
interval I = (α, α′), where α and α′ is a pair of consecutive roots of R∗. Since polynomi-
als f (qI , y) have rational coefficients and are square-free, the Descartes algorithm applies
directly yielding the numbers mI which correspond to the number of real roots of f (qI , y)
or, equivalently, the number of arcs of C above I.

Once this is done, for each x-critical value α we determine the real roots yα,1, . . . , yα,mα

of a (non square-free) fiber polynomial f (α, y) ∈ R[y], where mα is the multiplicity of α
as a root of R(y). Note that, a polynomial f (α, y) always has multiple roots and, generally,
algebraic (non-rational) coefficients. That is why, we cannot directly use the Descartes
method to isolate its roots. Instead, we use the method based on the iterative solution
of bivariate polynomial systems induced by the set of higher derivatives of f . This
method, called Lift in the original paper, is complete, i.e., it is guaranteed to succeed
in all degenerate situations. In fact, Lift is used in a combination with FastLift – a fast
method for fiber computations – acting as a filter. The latter approach relies on a nu-
merical solver to compute (arbitrary good) approximations of complex roots of f (α, y)
as well as on an exact certification step to prove the existence of roots within the com-
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puted complex discs. Altogether, FastLift shows impressive performance as reported in
(BEKS11a, BEKS11b). However, to keep the discussion concise, in what follows we only
consider the Lift method. Lift starts by computing the solutions pi = (α, βi), i = 1, . . . , l
of the system f = fy = 0 for each x-coordinate α using the algorithm Bisolve. Then, for
each of these points pi, we compute

ki := min{k :
∂k f
∂yk (α, βi) , 0} ≥ 2. (5.10)

We further adopt the notation writing fyk to denote ∂k f /∂yk, k ≥ 1. The above computation
can be done by iteratively invoking Bisolve for systems fy = fy2 = 0, fy2 = fy3 = 0, etc.,
and sorting the solutions along the vertical line x = α. We eventually end up with disjoint
intervals I1, . . . , Il and corresponding multiplicities k1, . . . , kl such that I j := I(β j) contains
a k j-fold root β j of f (α, y). Note that, the intervals I j are already isolating for multiple
roots of f (α, y), however, they might still contain the ordinary roots of f (α, y). Therefore,
we further refine each I j until we can guarantee via interval arithmetic that ∂k j f /∂yk j(α, y)
does not vanish on I j. Then, by the mean value theorem, I j cannot contain any other root
of f (α, y) except β j.

Finally, it remains to determine the ordinary roots of f (α, y). In the actual algorithm,
we use the Bitstream Descartes method (EKK+05) which we already know from the Bi-
solve routine. However, for the clarity of presentation, we may assume that the Bitstream
Descartes is replaced by interval arithmetic tests. Then, the ordinary roots of f (α, y) can
be determined as follows. We take the corresponding intervals I returned by the first in-
vocation of Bisolve (i.e., for the system f = fy = 0), and refine each of them until we
can show that I does not intersect with any interval I j for a multiple root of f (α, y), or is
completely contained in one of them. In the latter case, such an interval I cannot contain
an ordinary root of f (α, y), and thus can be safely discarded. While in the former case, I
is stored as isolating for some ordinary root of f (α, y).

Connection phase. As a result of previous computations, we obtain the set of vertices
V of GC given by the union of all intermediate points (qI , yI,i) and points (α, yα,i) with an
x-critical value α. In this last phase, we determine which of these vertices are connected
by an arc of C. To achieve this, for each value α, one has to distinguish between two
cases: namely, when there is exactly one x-critical point above α (generic case) or there
are several covertical x-critical points (non-generic case). Then, the algorithm uses some
combinatorial reasoning to decide how the intermediate and “special” points need to be
connected. For each connected pair of vertices, we add a corresponding edge to GC. It is
then rather straightforward to prove that the resulting topology graph GC is isotopic to C.

In the following section, we consider the benchmarks only for Bisolve since our pri-
mary goal was to challenge the GPU parts of the algorithm, while both approaches, Bi-
solve and BiCurveAnalysis, essentially use the same set of symbolic operations. A com-
plete set benchmarks for the algorithm BiCurveAnalysis can be found in (BEKS11b).

5.1.4 Performance evaluation
For experiments we have used our default configuration which consists of a desktop ma-
chine with 2.8GHz 8-Core Intel Xeon W3530 having 8 MB of L2 cache and GeForce
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Instance Description

L4_circles four circles w.r.t. L4-norm, clustered solutions
curve_issac a curve appeared in (CGL09)
tryme covertical solutions, many candidates to check
large_curves large number of solutions
degree_6_surf silhouette of an algebraic surface, covertical solutions in both directions
challenge_12_2∗ many candidate solutions to be checked
SA_4_4_eps∗ singular points with high tangencies, displaced
FTT_5_4_4∗ many non-rational singularities
dfold_10_6∗ a curve with many half-branches
cov_sol_20 covertical solutions
mignotte_xy a product of x/y- Mignotte polynomials, displaced; many clustered solutions
spider degenerate curve, many clustered solutions
hard_one vertical lines as component of one curve, many candidates to test
grid_deg_10 large coefficients, curve in generic position
huge_cusp large coefficients, high-curvature points
cusps_and_flexes high-curvature points
L6_circles four circles w.r.t. L6-norm, clustered solutions
ten_circles set of 10 random circles multiplied together, rational solutions
curve24 curvature of degree 8 curve, many singularities
compact_surf silhouette of an algebraic surface, many singularities, isolated solutions
13_sings_9 large coefficients, high-curvature points
swinnerston_dyer covertical solutions in both directions
challenge_12_1∗ many candidate solutions to be checked
SA_2_4_eps∗ singular points with high tangencies, displaced
spiral29_24 Taylor expansion of a spiral intersecting a curve with many branches, many

candidates to check

Table 5.1: Equations of singular algebraic curves. Curves marked with (*) are taken from (Lab10).

GTX580 graphics processor under 64-bit Linux platform. The exact number types have
been provided by Gmp 5.0.1 library. In addition, we have also used Ntl 5.5 library1 to
compare the performance of our GCD algorithm against the best CPU-based implementa-
tion available to date. The algorithm Bisolve has been integrated in Cgal (Computational
Geometry Algorithms Library, www.cgal.org) as a prototypical package. We remark
that the design of Cgal follows generic programming paradigm which greatly facilitates
benchmarking as it enables us to exchange relevant parts of the implementation. In partic-
ular, we have been able to easily replace the default resultant and GCD implementations
in Cgal with the GPU-based algorithms using template specialization.

As reference implementations, we have taken the algorithms Isolate developed by
Fabrice Rouillier and Lgp by Xiao-Shan Gao et al.2 Both algorithms are interfaced
through 64-bit Maple 14. Note that that this version of Maple can benefit from multiple
CPUs available on the host machine. This parameter, set by ‘kernelopts(multithreaded)’
command, defaults to 8 on our desktop. We further remark that all three implementa-
tions (including ours) make the essential use of RealSolving (Rs) package3 for real root
isolation which is known to be one of the best univariate solvers available to date. Fi-

1Gmp: http://gmplib.org, Ntl: http://www.shoup.net/ntl
2http://www.mmrc.iss.ac.cn/~xgao/software.html
3http://www.loria.fr/equipes/vegas/rs
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Instance y-degree bits # sols Bs Bs+gres Bs+gres Lgp Isolate
+ggcd

L4_circles 16 29 17 2.47 1.57 1.55 7.6 1.3
curve_issac 15 16 18 3.68 2.77 2.8 3.3 29.8
tryme 24, 34 117, 24 20 66.2 22.7 22.0 107.8 397.4
large_curves 24, 19 25, 103 137 84.4 73.8 73.46 98.1 311.6
degree_6_surf 42 47 13 95.7 14.1 13.6 131.2 ?
challenge_12_2 40 43 99 69.9 14.0 13.8 277.7 351.6
SA_4_4_eps 33 228 2 94.5 2.39 1.76 54.5 158.6
FTT_5_4_4 40 39 62 42.8 10.3 9.8 195.6 256.4
dfold_10_6 32 17 21 21.06 4.43 4.45 3.76 3.8
cov_sol_20 20 128 8 18.93 8.67 8.35 171.6 532.4
mignotte_xy 32 84 30 314.2 253.2 249.4 ? ?
spider 28 250 38 215.0 51.6 46.7 ? ?
hard_one 27, 6 94, 49 46 7.74 7.0 6.8 17.5 64.5
grid_deg_10 10 505 20 2.75 1.32 1.32 2.64 111.2
huge_cusp 8 3044 24 14.8 9.4 7.58 116.7 ?
cusps_and_flexes 9 386 20 1.62 1.02 0.93 2.43 381.5
L6_circles 24 58 18 16.9 4.31 4.11 51.6 21.4
ten_circles 20 22 45 8.7 6.55 6.44 4.9 5.8
curve24 24 26 28 31.3 14.3 14.7 37.9 86.0
compact_surf 18 296 57 12.1 4.41 4.18 12.0 871.9
13_sings_9 9 383 35 2.33 1.8 1.64 2.8 341.9
swinnerston_dyer 40 24 63 37.9 19.3 19.1 27.9 73.8
challenge_12_1 30 32 99 17.63 6.65 6.8 37.1 44.0
SA_2_4_eps 17 220 6 4.39 0.36 0.31 4.7 3.31
spiral29_24 29, 24 37, 25 51 59.5 30.4 30.9 76.5 215.3

Table 5.2: Execution time in seconds for singular curves given in Table 5.1. ‘y-degree’: the degree
of input polynomials in y-variable; ‘bits’: coefficient bitlength; ‘# sols’: the number of solutions in R2;
question mark ‘?’ indicates that algorithm was aborted by error or timeout (> 1500 sec).

nally, we have run Bisolve with all filters, including combinatorial, bidirectional as well
as bitstream Descartes switched on since our main goal was to challenge the GPU part of
the algorithm. For a full description of the filtering techniques used in Bisolve, we refer
to (BES11, Section 4.2).

In the benchmarks, we distinguish between polynomial systems which correspond
to singular algebraic curves1 and those induced by a pair of random polynomials with
increasing coefficient bitlength. The former systems, whose description is provided in Ta-
ble 5.1, can have clustered (bad separated) and/or covertical solutions or require many
candidates being checked. In contrast, the curves specified by random polynomials are
unlikely to have any complicated topology: here the intention was to see how different
algorithms can handle polynomials with large coefficients.

The timings for singular curves are listed in Table 5.2. Whenever only a single number
is specified in the second column of the table (‘y-degree’), then the competing approaches
compute the solutions of a system induced by some f ∈ Z[x, y] and its first derivative f ′y .
The columns ‘Bs’, ‘Bs+gres’ and ‘Bs+gres+ggcd’ display the running times for our al-
gorithm without GPU support, with GPU resultants and with GPU resultants and GCDs,

1For the definition of an algebraic curve see Section 5.3.1.
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Configuration # sols Bs Bs+gres Bs+gres Lgp Isolate
+ggcd

y-degree: 15/13, bits: 64 10 5.59 3.46 3.15 28.9 ?
y-degree: 14/12, bits: 128 12 5.16 3.14 2.46 26.3 652.2
y-degree: 13/13, bits: 256 10 7.15 3.22 3.02 33.5 ?
y-degree: 13/12, bits: 384 6 9.11 4.42 2.32 ? ?
y-degree: 11/11, bits: 512 2 4.3 1.02 0.59 17.2 ?
y-degree: 11/10, bits: 768 15 17.2 12.8 6.35 46.9 ?
y-degree: 10/9, bits: 1024 12 13.4 10.0 4.87 18.9 ?
y-degree: 10/9, bits: 1568 4 16.44 9.94 3.49 30.9 ?
y-degree: 9/9, bits: 2048 9 14.13 7.11 5.25 134.3 ?
y-degree: 8/7, bits: 4096 4 18.94 12.3 11.3 42.7 ?
y-degree: 5/5, bits: 6000 2 2.28 1.2 1.2 19.8 ?

Table 5.3: Execution time in seconds for random polynomials. ‘y-degree’: the degree of input polynomi-
als in y-variable, ‘bits’: bitlength of scalar coefficients, ‘# sols’: the number of solutions in R2; question
mark ‘?’ indicates that algorithm has been aborted by error or timeout (> 1500 sec)

respectively. In the former two cases, we use a GCD implementation from Ntl library.
For the CPU-based implementation of the resultant algorithm, we use the one available in
Cgal by default. As one can see from the table, our algorithm is, in general, superior to
Lgp and Isolate. Indeed, even with the disabled GPU support Bisolve shows a noticeable
performance improvement, especially in the tough cases when the competing approaches
time out. However, for three instances, ‘L4_circles’, ‘dfold_10_6’ and ‘ten_circles’, our
approach is slightly slower than the competitors. Upon detailed examination of the run-
ning times, we found that this slowdown was mainly caused by the subtle nature of the
Bitstream descartes algorithm used as a filter in our approach. We are, nevertheless, con-
vinced that this minor problem can be eliminated by revisiting our implementation. It is
also worth mentioning that the default resultant algorithm available within Cgal is not
mature enough and clearly looses against the Maple’s algorithm (used by Lgp and Iso-
late). This justifies somewhat larger-than-expected running times for our approach when
the GPU support is disabled.

Further analyzing the results in Table 5.2, we observe that Isolate performs partic-
ularly bad for polynomials with large coefficient bitlength while our approach and Lgp
are less sensitive to this parameter. For Bisolve, we also see that the GPU-based resul-
tant algorithm sometimes can give a huge performance boost, especially for high-degree
polynomials. From other perspective, this confirms that the resultant is the only time-
consuming symbolic operation used by our approach. The running times in the columns
‘Bs+gres’ and ‘Bs+gres+ggcd’ indicate that the GPU-based GCD algorithm only gives
any noticeable speed-up when polynomials have large coefficients. The reason for this is
because computing a GCD of moderate-degree univariate polynomials does not provide
a sufficient amount of parallelism to keep the GPU circuits busy: the behaviour that we
have also observed in the experiments in Section 4.5.5. Furthermore, the competing Ntl’s
GCD approach is already optimal for polynomials in this range. On the average, the GCD
computation alone takes about 3–10 % of the running time, hence there is no much room
for improvement.

Let us now turn to the second part of experiments dealing with random polynomials.
Here, the solution of an induced bivariate system does not present any challenge to our
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approach since, in many cases, the candidate solutions can be selected based on a simple
counting argument, see combinatorial filter in (BES11), and thus our inclusion predicate
is not supposed to be used. Hence, the only expected contributors to the running time are
the resultant, GCD and univariate root isolation. We note, however, that for other compet-
ing approaches this is not necessarily the case because the idea of the combinatorial filter
is based on a clever combination of the bitstream Descartes root isolator (EKK+05) and
simultaneous root refinement. Table 5.3 shows the running times. Unfortunately, we did
not manage to run Isolate on these instances as the algorithm was constantly reporting
‘segment violation’ error. Nevertheless, we can see that Bisolve clearly outperforms Lgp
for all examples, even if no GPU support is available (see the column ‘Bs’ in the table).
Using the GPU for resultant and GCD computations yields an additional 2–4x speedup.
Besides, observe that the GPU-based GCD algorithm performs significantly better than
in the first part of experiments, giving alone about 2x speed-up over Ntl’s algorithm.
The reason for this is quite natural because polynomials with large coefficients need more
homomorphic images for the GCD computation which increases the level of parallelism.

In summary, we see that the GPU algorithms perform well not only in synthetic bench-
marks from the previous chapter but also on real data. As a result, we can state that the
symbolic operations no longer constitute a global bottleneck allowing us to solve more
complicated problems which were previously beyond the reach of traditional software.

5.2 Complexity analysis of Bisolve

To derive the bit complexity of the algorithm, we assume that f and g have total degree
at most n and the scalar coefficients bounded by 2τ in absolute value, τ ∈ N. For con-
venience, we shall also write that the polynomials have magnitude (n, τ). Throughout
the complexity analysis, we assume that the multiplication of two integers can always be
done in asymptotically fast way. That is, the bit complexity of multiplying two k-bit in-
tegers will be bounded by: MB(k) = O(k log k log log k). Besides, in our derivations, we
shall not take into account polylogarithmic factors in n or τ and write Õ to denote such a
complexity bound.

The whole argument will follow a similar outline as the one used for presenting the
algorithm itself in the previous section: we first derive the complexity of three stages
separately, and then combine the bounds afterwards.

5.2.1 Project and Separate phases
Project : The algorithm starts by computing the resultants R(x) and R(y). For this task,
we utilize an asymptotically fast subresultant algorithm based on Half-GCD computation
whose complexity is stated by the following theorem.

Theorem 5.2.1: (Rei97) Let F,G ∈ Z[x, y] be polynomials with scalar coefficients bounded
by 2µ, and degy(F) = p, degy(G) = q, p ≥ q and degx(F) ≤ d, degx(G) ≤ d. Then, com-
puting the coefficients of resy(F,G) ∈ Z[x] requires

O(p log p · MB{µ(p + q)2d})

bit operations. ♦
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Thus, computing R(x) and R(y) demands for Õ(n4τ log n) bit operations, and the resulting
polynomials have magnitude

(n2,O(n(log n + τ))).

Next, we compute R/ gcd(R,R′) to extract a square-free part R∗ of R. This operation has
a bit complexity Õ(n5(τ + log n)), see (Rei97, LR01), R∗ is of magnitude

(n2,O(n(n + τ))). (5.11)

Finally, we isolate the real roots αi of R∗ using the algorithm Newdsc already mentioned
in Section 5.1.2. By Theorem 5.1.1 the cost of real root isolation for R∗ is bounded by

Õ(n8 + n7τ) (5.12)

which determines the complexity of the first step. We further remark that the same com-
plexity bound can be achieved by using an asymptotically fast numerical solver, e.g.,
see (Pan97), to approximate all complex roots of R∗.

Separate : Before proceeding with the complexity analysis of Separate, we prove an
auxiliary result to upper bound Σ(F) =

∑
z log sep(z, F)−1 for a (not necessarily square-

free) polynomial F with magnitude (N, µ), where the sum is taken over all roots of F
counted with multiplicity. This result might be of independent interest as we are not
aware of any similar bounds which apply to polynomials with multiple roots.

Theorem 5.2.2: Let F ∈ Z[x] be a polynomial of magnitude (N, µ). We denote z1, . . . , zd

the distinct complex roots of F and si := mult(zi, F) the multiplicity of zi. Then, for
arbitrary non-negative integers mi, with mi ≤ si, we have

d∑
i=1

mi log sep(zi, F)−1 = Õ(N2 + Nµ).
♦

Proof We consider the factorization of F (over Z) into square-free and pair-wise coprime
factors:

F(x) =
∏k

i=1
Qi(x)si , di := deg(Qi) ≥ 1,

so that Qi(x) and F(x)/Qi(x)si are coprime, and
∑k

i=1 disi = N. We further denote F∗ the
square-free part of F and d := deg(F∗) =

∑k
i=1 di its degree. Then, for two arbitrary roots

α and β of F∗, it holds that

|(F∗)′(α)| = | lcf(F∗)| · |α − β|
∏
γ,α,β

|γ − α| ≤ | lcf(F∗)| · |α − β|
∏
γ,α,β

2 max{1, |α|, |γ|}

≤ 2d−2|α − β|max{1, |α|}d−3M(F∗)

sinceM(F∗) = | lcf(F∗)| ·
∏

z:F∗(z)=0 max{1, |z|}. Suppose, w.l.o.g., that α is a root of Qi and
β is a root of F∗ closest to α. Then, according to the above inequality, we have

sep(α, F) = |α − β| ≥
|(F∗)′(α)|

2d−2 max{1, |α|}d−3M(F∗)
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We now apply this inequality to the product over all sep(α j, F), j = 1, . . . , di, where
α1, . . . , αdi denote the roots of Qi:

di∏
j=1

sep(α j, F) ≥ 2(2−d)diM(Qi)3−dM(F∗)−di

di∏
j=1

|(F∗)′(α j)|

= 2(2−d)diM(Qi)3−dM(F∗)−di

di∏
j=1

|(Qi)′(α j) ·
F∗

Qi
(α j)|

(5.13)

since (F∗)′(α j) = Qi(α j)︸ ︷︷ ︸
=0

·
(

F∗
Qi

)′
(α j) + (Qi)′(α j) · F∗

Qi
(α j). In addition, we have

di∏
j=1

|Q′i(α j)| = | lcf(Qi)2−di Disc(Qi)| ≥ | lcf(Qi)2−di |, and

di∏
j=1

|
F∗

Qi
(α j)| = | lcf(Qi)di−d res(Qi,

F∗

Qi
)| ≥ | lcf(Qi)di−d|

because Disc(Qi) and res(Qi,
F∗
Qi

) are non-zero integers. Applying the latter two inequali-
ties to (5.13) now yields:

di∏
j=1

sep(α j, F) ≥2(2−d)diM(Qi)3−dM(F∗)−di | lcf(Qi)2−d|.

Finally, we consider the product of the separations of all roots to the respective powers si:

k∏
i=1

di∏
j=1

sep(α j, F)si ≥

k∏
i=1

2(2−d)di siM(Qi)(3−d)si · M(F∗)−di si ·

k∏
i=1

| lcf(Qi)|−si

= 2(2−d)NM(F)3−dM(F∗)−N | lcf(F)|−1 = 2−Õ(N2+Nµ)

since
∏k

i=1M(Qi)si =M(F) by the multiplicativity of the Mahler measure, andM(F∗) ≤
M(F) = 2Õ(µ). Hence, for the case mi = si for all i = 1, . . . , d, the claim eventually
follows by taking the logarithm on both sides. Since for each root z of F, sep(z, F) is upper
bounded by two times the maximal absolute value of all roots of F, we have sep(z, F) <
2µ+2 according to the Cauchy root bound, see e.g. (Yap00). Thus, the claim also follows
for arbitrary integers mi with 0 ≤ mi ≤ si.

Let us now return to the analysis of Separate. In the projection step, we have already
determined intervals I := I(α) which isolate the real roots α of R∗. Now, each I has to be
refined until the inequality (5.4) holds. This ensures that ∆8rI (mI) isolates α ∈ I from all
other roots of R∗, and thus the value LB(α) as defined in (5.5) constitutes a lower bound
for |R(α)| on the boundary of ∆(α) = ∆2rI (mI). In each iteration, we approximate α to a
certain number L of bits after the binary point. Then, we check whether the inequality
(5.4) holds. If the latter inequality does not hold, we double L and proceed. According
to (SY09, Lemma 2), the inequality

|(R∗)′(z) −
3
2

∑
k≥2

∣∣∣∣∣∣ (R∗)(k)(mI)
k!

∣∣∣∣∣∣ rk > 0
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succeeds for all r < sep(zi,R∗)/(4n4) ≤ sep(zi,R∗)/(4 deg(R∗)2).1 It follows that (5.4) is
guaranteed to succeed for

rI < sep(zi,R∗)/(32n4) = sep(zi,R)/(32n4).

Hence we have to approximate α to at most

2 log(32n4/ sep(α,R)) = O(log(sep(α,R)−1 + log n)

many bits after the binary point. According to Theorem 5.2.2, log sep(α,R)−1 is bounded
by O(n4 + n3τ). Therefore, each real root α has to be refined to at most Õ(n4 + n3τ) many
bits. Such a computation requires

Õ(n4(n4 + n3τ)) = Õ(n8 + n7τ) (5.14)

bit operations (for all real roots) due to (Sag11, Theorem 10) or alternatively, using (Pan97).
It remains to estimate the cost for checking whether (5.4) holds. In order to do so, we first
compute (R∗)′(x + mI), the Taylor expansion of (R∗)′ at x = mI . Since mI is a dyadic
number that is representable by O(n2 + nτ + log sep(α,R)−1) many bits, the cost for this
computation is bounded by

Õ(deg(R∗)2(n2 + nτ + log sep(α,R)−1)) = Õ(n4(n2 + nτ + log sep(α,R)−1)),

where we use the asymptotically fast Taylor shifts (vzGG03). Then, we replace x by 8rI

yielding (R∗)′(mI + 8rI x). This is equivalent to shifting the k-th (dyadic) coefficient of
f (mI + x) by k log(8rI) many bits. The resulting polynomial has dyadic coefficients of
bitsize

O(n2 + nτ + n2 log sep(α,R)−1),

and the final evaluation demands for O(n2(n2 + nτ + n2 log sep(α,R)−1)) many bit opera-
tions. Summing up over all real roots α of R thus yields the bound∑

α

Õ(n4(n2 + nτ + log sep(α,R)−1)) = Õ(n8 + n7τ) (5.15)

for the overall cost since there at most n2 many real roots and Σ(R∗) = Õ(n4 +n3τ). Finally,
by comparing (5.14) and (5.15) with (5.12), we conclude that the complexity of Separate
is not worse than that of Project phase.

5.2.2 Validate phase
In the final stage, Validate, we have a set of candidate solutions C and corresponding
disjoint polydiscs ∆(α, β) := ∆(α) × ∆(β) ⊂ C2. Each of the polydiscs contains at most
one solution of (5.1), namely, (α, β). The actual solutions of the system are chosen from C
based on the inclusion test from Theorem 5.1.3, while the other candidates are excluded
using interval arithmetic. We split the complexity analysis of Validate in two parts: first,
we derive a lower bound LB(α) for |R| on the boundary of ∆(α) as well as an upper bound

1In (SY09, Lemma 2), a constant is
√

2 is given instead of 3/2. However, the same proof also applies to
the “3/2-case”.
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for the values of |u(y)| and |v(y)| on ∆(α, β) as needed by the inclusion predicate. In the
second part, we estimate how good each candidate (α, β) must be approximated in order
to certify it as a solution or to discard it.

Estimating the lower bounds. We first compute lower and upper bounds for LB(α) =

2−2 deg R|R(mI − 2rI)| which, in turn, constitutes a lower bound for the values of |R(z)| on
the boundary of the disc ∆(α) := ∆2rI (mI), where I := I(α) is the isolating interval for α
obtained in Separate; then, the similar bounds also apply to LB(β), the lower bound for
|R(x)| on the boundary of ∆(β), see Section 5.1.2 (Separate).

In the analysis of Separate, we have already argued that approximating α to an error
of sep(α,R)/(32n4) or less guarantees that the inequality (5.4) holds, and thus the disc
∆8rI (mI) isolates α. In each iteration of the refinement, we double the number of bits
to which α is approximated and check whether (5.4) holds. Hence, it follows that the
so-obtained interval I(α) has width wI > (sep(α,R)/(32n4))2. In addition, since the disc
∆8rI (mI) isolates α, we have wI < sep(α,R)/7. We fix these bounds for wI:

sep(α,R)2

1024n8 < wI ≤
sep(α,R)

7
. (5.16)

Let us now consider the factorization of R into linear factors, that is, R(z) = lcf(R)·
∏d

i=1(z−
zi)si , where z1, . . . , zd denote the distinct complex roots of R and si the corresponding
multiplicities. Then, with α = z j, we have

sep(z j,R)
4

> |(mI − 2rI) − z j| >
sep(z j,R)2

2048n8 , and 2|z j − zi| > |(mI − 2rI) − zi| >
|z j − zi|

2

for all i , j. Hence, it follows that

LB(α) = LB(z j) = 2−2 deg R · |R(mI − 2rI)|

= 2−2 deg R| lcf(R)| · |(mI − 2rI) − z j|
s j
∏
i, j

|(mI − 2rI) − zi|
si

< 2−2 deg R| lcf(R)| · (sep(z j,R)/4)s j
∏
i, j

|2(z j − zi)|si

< sep(z j,R)s j · | lcf(R)| ·
∏
i, j

|z j − zi|
si < sep(z j,R)s j

|R(s j)(z j)|
s j!

= 2O(n2+nτ) max{1, |z j|}
n2

sep(z j,R)s j = 2O(s j(n2+nτ)) max{1, |z j|}
n2

(5.17)

since R(s j)/(s j!) ∈ Z[x] has magnitude (n2, n(n+τ)), and sep(z j,R) < 2 maxi |zi| = 2O(n(n+τ))

according to Cauchy’s Bound. We can also compute a lower bound for LB(α):

LB(α) > 2−2 deg R| lcf(R)| ·
(
sep(z j,R)2

2048n8

)si ∏
i, j

(
|z j − zi|

2

)si

>
2−3 deg R

(2048n8)si
· | lcf(R)| sep(z j,R)2s j

∏
i, j

|z j − zi|
si .

(5.18)
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Note that, we are mainly interested in a bound for the product of all LB(α), thus we first
consider the product

Π :=
d∏

j=1

 2−3 deg R

(2048n8)si
· | lcf(R)| sep(z j,R)2s j

∏
i, j

|z j − zi|
si


of the bound in (5.18) over all j = 1, . . . , d. Since

∑
i si = d ≤ deg R ≤ n2, it follows that

d∏
j=1

2−3 deg R

(2048n8)si
= 2−O(n4).

For the product of the remaining factors, we first write R =
∏s0

s=1 Qs
s with square-free,

pairwise coprime Qs ∈ Z[x]. Since R(s)/s! has integer coefficients, we have

1 ≤ | res(Qs,
R(s)

s!
)| = | lcf(Qs)|deg(R)−s

∏
z:Qs(z)=0

R(s)(z),

and thus

d∏
j=1

| lcf(R)| sep(z j,R)2s j
∏
i, j

|z j − zi|
si


> | lcf(R)|d2−2Σ(R)

∏
j

∏
i, j

|zi − z j|
s j = 2−2Σ(R)

∏
j

|R(s j)(zi)|
s j!

= 2−2Σ(R)
s0∏

s=1

| lcf(Qs)|s−deg(R)| res(Qs,
R(s)

s!
)|

> 2−2Σ(R)| lcf(R)| · | lcf(R∗)|− deg(R) = 2−Õ(n4+n3τ),

where we used that | lcf(R)| ≤ 2O(n(log n+τ)), deg R ≤ n2, and Σ(R) = Õ(n4 + n3τ). Hence,
Π is lower bounded by 2−Õ(n4+n3τ). Similar to the computation in (5.17), we can also
determine an upper bound for the j-th factor in Π. Namely, we have 2−3 deg R(2048n8)−s j <
1, sep(z j,R)s j = 2O(s jn(log n+τ)) and

lcf(R)
∏
i, j

|z j − zi|
si =
|R(s j)(z j)|

s j!
< 2O(n(log n+τ)) max{1, |z j|}

n2
.

Thus, for an arbitrary subset J ⊂ {1, . . . , d}, the partial product

Π′ :=
∏
j∈J

 2−3 deg R

(2048n8)si
· | lcf(R)| sep(z j,R)2s j

∏
i, j

|z j − zi|
si


is smaller than

2O(n4+n3τ)
∏
j∈J

max{1, |z j|}
n = 2O(n4+n3τ)

since
∏

j∈J max{1, |z j|}
n ≤ M(R) = 2O(n(log n+τ)). Finally, since the product over all LB(α)

is lower bounded by a partial product of Π, it follows that
∏

α LB(α) = 2−Õ(n4+n3τ). The
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same argument further shows that each LB(α) is lower bounded by 2−Õ(n4+n3τ) as well.

Estimating the upper bounds. In order to compute the upper bounds UB(α, β, u(y)) and
UB(α, β, v(y)) for |u(y)| and |v(y)| on ∆(α, β) we apply Hadamard’s inequality to the matrices
U (y) and V (y), see Section 5.1.2 (Validate). By analogy, these estimates then also extend
to the upper bounds UB(α, β, u(x)) and UB(α, β, v(x)) for |u(x)| and |v(x)| on ∆(α, β).

In the actual realization, we use interval arithmetic for a box in C2 which contains
∆(α, β) in order to estimate the absolute values of the respective matrix entries Ui j and
Vi j, and then apply Hadamard’s bound. For the complexity analysis, we follow a slightly
different but even simpler approach: From the construction of ∆(α, β), the disc ∆(α)
has radius less than sep(α,R(y))/4, and ∆(β) has radius less than sep(β,R(x))/4 according
to (5.16). Hence, the latter two radii are upper bounded by 2 max{1, |α|} and 2 max{1, |β|},
respectively. Recall that the matrix U (y) is of the form:

U (y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f (y)
my f (y)

my−1 . . . f (y)
0 0 . . . yny−1

...
. . .

. . .
. . .

...

0 . . . 0 f (y)
my f (y)

my−1 . . . 1

g(y)
ny g(y)

ny−1 . . . g(y)
0 0 . . . 0

...
. . .

. . .
. . .

...

0 . . . 0 g(y)
ny g(y)

ny−1 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where the polynomials f (y)
i (x) and g(y)

i (x) are of magnitude (n, τ) (see Section 5.1.1). Thus,
for each point (x̂, ŷ) ∈ ∆(α, β), the following inequality holds:

| f (y)
i (x̂)| ≤ (n + 1) · 2τ(2 max{1, |α|})n,

and a similar bound applies to |g(y)
i (x̂)| as well. For the last column of U (y), we have:

(ŷ)ny−1 ≤ (2 max{1, |β|})n, and thus |U (y)
i j (x̂, ŷ)| ≤ (n+1)·2τ+n max{1, |α|, |β|}n. By Hadamard’s

inequality, |u(y)| = | det(U (y))| <
∏

i |U
(y)
i |2 where |U (y)

i |2 is the 2-norm of the i-th row vector
of U (y). Hence, when using the latter bounds for the entries of U (y), we obtain an upper
bound UB(α, β, u(y)) for |u(y)| on the polydisc ∆(α, β), such that UB(α, β, u(y)) ≥ 1 and

log |UB(α, β, u(y))| = O(n(τ + n) + n2 log max{1, |α|, |β|})

= O(n4 + n3τ).
(5.19)

Again, we are looking for amortization effects: Taking the product of the latter bounds
over all candidates (α, β) yields:∑

α,β

log UB(α, β, u(y)) =
∑
α,β

O(n2 + nτ) +
∑
α,β

n2 log max{1, |α|, |β|}

≤ O(n6 + n5τ) + n2
∑
β

∑
α

log max{1, |α|} + n2
∑
α

∑
β

log max{1, |β|})

≤ O(n6 + n5τ) + n2 logM(R(y)) + n2 logM(R(x)) = Õ(n6 + n5τ)

(5.20)

because there are at most n2 many roots α and β. A completely similar argument shows
that the bounds in (5.19) and (5.20) are also valid for UB(α, β, v(y)), UB(α, β, u(x)) and
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UB(α, β, v(x)).

The inclusion test. For a given candidate (α, β) ∈ C and B := B(α, β) = I(α) × I(β) ⊂ R2

the corresponding candidate box, we define

δ(B) :=
min(LB(α), LB(β))

maxw∈{u(x),u(y),v(x),v(y)}UB(α, β,w)
.

From the bounds that we have computed in the previous section, we conclude that log δ(B)−1 =

Õ(n4 + n3τ). According to Theorem 5.1.3, B is isolating for a solution of (5.1) if and only
if there exists an (x0, y0) ∈ B with

| f (x0, y0)| + |g(x0, y0)| < δ(B). (5.21)

Hence, by contraposition, we must have

| f (x0, y0)| + |g(x0, y0)| ≥ δ(B) (5.22)

for all (x0, y0) ∈ B if B contains no solution. In order to certify or discard (α, β) as a
solution of the system, we evaluate f and g on B using interval arithmetic with precision
ρ := ρ(B) = d− log se, where s := max{wI(α),wI(β)} is the size of B. As a result of this
evaluation, we obtain intervals B( f (α, β), ρ) and B(g(α, β), ρ) which contain f (B) and
g(B), respectively. The above consideration shows that it suffices to use a precision ρ such
that both intervals B( f (α, β), ρ) and B(g(α, β), ρ) have width less than δ(B)/2. Namely,
if this happens, then either one of the intervals does not contain zero or we must have
| f (x0, y0)| + |g(x0, y0)| < δ(B) for all (x0, y0) ∈ B. In the first case, we can discard (α, β),
whereas, in the second case, we can guarantee that (α, β) is a solution.

The width of B( f (α, β), ρ) (and B(g(α, β), ρ)) is directly related to the absolute error
induced by the interval arithmetic. In order to bound this error, we briefly outline how
the interval arithmetic is performed and refer the reader to (KS11a, Section 4) for more
details; cf. (MOS11, Theorem 18) for an alternative approach when using floating point
evaluation instead. For a precision ρ ∈ N and x ∈ R, we define:

down(x, ρ) = {k · 2−ρ ∈ R : k = bx · 2ρc},
up(x, ρ) = {k · 2−ρ ∈ R : k = dx · 2ρe}.

(5.23)

That is, x is included in the interval B(x, ρ) := [down(x, ρ), up(x, ρ)]. For simplicity,
we omit the precision parameter ρ and write up(x) or B(x). Arithmetic operations on
approximate numbers obey the rules of classical interval arithmetic; for x, y ∈ R, we
define:

B(x) +B(y) := [down(x) + down(y), up(x) + up(y)],
B(x) −B(y) := [down(x) − up(y), up(x) − down(y)],

B(x) ·B(y) :=
[
down( min

i, j={1,2}
{Hi(x)H j(y)}), up( max

i, j={1,2}
{Hi(x)H j(y)})

]
,

where H1(x) = down(x), and H2(x) = up(x). Using these rules for F ∈ R[x] and x0 ∈ R,
B(F(x0), ρ) can be evaluated using the Horner’s scheme:

B(F(x0)) = B(F0) +B(x0) · (B(F1) +B(x0) · (B(F2) + . . . )).
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The next lemma provides a bound on the error that is induced by polynomial evaluation
with precision ρ.

Lemma 5.2.1: Let F ∈ R[x] be a polynomial of degree N with coefficients of absolute
value less than 2µ, c ∈ R with |c| ≤ 2υ, and ρ ∈ N. Then,

|F(c) − H(F(c), ρ)| ≤ 2−ρ+12µ2Nυ(N + 1)2,

where H = {down, up}. In particular, B(F(c), ρ) has width 2−ρ+2(N + 1)22µ+Nυ or less. For
a proof, see (KS11a, Lem. 3). ♦

In particular, this lemma asserts that the absolute error which results from approximate
polynomial evaluation is linear in 2−ρ and of degree n in the absolute value of the input.

We now aim to bound the error for evaluating f (α, β) using fixed-point arithmetic with
precision ρ. Using Lemma 5.2.1, we obtain the following estimate for each coefficient
fi(α) of f (α, y):

| fi(α) −B( fi(α), ρ)| ≤ 2−ρ+1(n + 1)22τ max{1, |α|}n,

while the maximal magnitude of the values B( fi(α), ρ) is estimated as 2τ max{1, |α|}n.
Applying Lemma 5.2.1 second time, we conclude evaluating f (α, β) with precision ρ
induces an absolute error of less than

2−ρ+1(n + 1)22τ max{1, |α|, |β|}n.

Thus, the width of B( f (α, β), ρ) is bounded by 2−ρ+2(n + 1)22τ max{1, |α|, |β|}n. The same
bound also applies to B(g(α, β), ρ). It follows that our inclusion/exclusion test must suc-
ceed for any precision ρ less than

ρ(B) := log(8(n + 1)22τ max{1, |α|, |β|}nδ(B)−1)

because, then, both intervals B( f (α, β), ρ) and B( f (α, β), ρ) have width less than δ(B)/2.
Since we double the working precision ρ in each step, we eventually succeed with

ρ < 2ρ(B) = O(log n + τ + n log max{1, |α|, |β|} − log δ(B)) = Õ(n4 + n3τ).

In addition, we have to refine the isolating intervals I(α) and I(β) to a width 2−ρ =

2−Õ(n4+n3τ). In our analysis of Separate, we have already seen that refining the isolat-
ing intervals for all real roots of R(y) (and R(x)) to a width of 2−Õ(n4+n3τ) demands for Õ(n8 +

n7τ) many bit operations. It remains to bound the cost for evaluating B( f (α, β), ρ) and
B( f (α, β), ρ): Due to the fact that we have to perform O(n2) many multiplications and ad-
ditions with dyadic numbers whose binary representations needO(τ+n log max{1, |α|, |β|}−
δ(B(α, β))) many bits, the latter computation requires

Õ(n2{τ + n log max{1, |α|, |β|} − ρ(B(α, β))}) (5.24)

many bit operations. Hence, for the bit complexity of the polynomial evaluations at all
(α, β), we obtain the bound∑

α,β

Õ(n2{τ + n log max{1, |α|, |β|} − δ(B(α, β))})

= Õ(n6τ + n3
∑
α,β

log max{1, |α|, |β|} − n2
∑
α,β

δ(B(α, β)))

= Õ(n7 + n6τ − n2
∑
α,β

δ(B(α, β))),

(5.25)
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where we use the same argument as in (5.20) to bound the sum of all log max{1, |α|, |β|}.
The following computation further shows that −

∑
α,β log δ(B(α, β)) = Õ(n6 + n5τ): Using

the upper bound (5.17) for LB(α) and LB(β) yields

log(min(LB(α), LB(β)))−1 ≤ log LB(α)−1 + log LB(β)−1

+ 2n2 · log max{1, |α|, |β|} + O((sα + sβ)(n2 + nτ)),

where sα denotes the multiplicity of α as a root of R(y), and sβ the multiplicity of β as a
root of R(x). Hence, the bound Õ(n6 + n5τ) for the sum over all log(min(LB(α), LB(β)))−1

follows from∑
α,β

log LB(α)−1 + log LB(β)−1 =
∑
β

∑
α

log LB(α)−1+

+
∑
α

∑
β

log LB(β)−1 ≤ −n2(
∑
α

log LB(α) +
∑
β

log LB(β))

= −n2(log
∏
α

LB(α) + log
∏
β

LB(β)) = Õ(n6 + n5τ),

and ∑
α,β

2n2 log max{1, |α|, |β|} + O((sα + sβ)(n2 + nτ))

= Õ(n6 + n5τ + (n4 + n3τ) · (
∑
α

sα +
∑
β

sβ)) = Õ(n6 + n5τ).

In addition, the result from (5.20) shows that∑
α,β

log max
w∈{u(x),u(y),v(x),v(y)}

UB(α, β,w) ≤
∑
α,β

log UB(α, β, u(x)) +
∑
α,β

log UB(α, β, u(y))

+
∑
α,β

log UB(α, β, v(x)) +
∑
α,β

log UB(α, β, v(y)) = Õ(n6 + n5τ).
(5.26)

Thus, the claimed bound for−
∑
α,β log δ(B(α, β)) follows from our definition of δ(B(α, β)).

Substituting this into (5.25), we obtain

Õ(n8 + n7τ) (5.27)

which bounds the overall bit complexity of polynomial evaluations.

Overall complexity and concluding remarks. Finally, combining the complexity bounds
(5.12), (5.15) and (5.27) for the three stages of the algorithm, we conclude that

Õ(n8 + n7τ) (5.28)

determines the total complexity of the algorithm. To the best of our knowledge, the lat-
ter bound is a major step forward in terms of improving asymptotic complexity for this
fundamental task. We would also like to stress the fact that the new complexity bound
is not only the merit of improved asymptotic complexity of real root isolation and root
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refinement but also due to the use of the novel validation procedure which completely
avoids any symbolic operations traditionally used in analogous algorithms (such as com-
puting signed remainder sequences or SRs for short). This fact also finds a confirmation
in the experiments (see Section 5.1.4) because, typically, evaluating the SRs constitutes a
major performance bottleneck. To see how our bound compares to the previously known
estimates, we shall briefly discuss several analogous works.

A quite early result on the complexity analysis can be found in (GVK96). This work
analyzes the complexity of computing the topology of an algebraic curve – the problem
closely related to that of solving a bivariate polynomial system. The derived complexity
bound for the algorithm Top is Õ(N14) bit operations where N = max(n, τ).

Another paper (DET09) proposes three algorithms to solving a bivariate polynomial
system which are based on the evaluation of SRs. The first method, Grid, projects the
solutions onto orthogonal axes and, then, matches them by means of a Sign_at procedure.
The complexity of Grid is bounded by Õ(N14) bit operations, where the overall cost is
dominated by that of Sign_at operations. The second approach called M_rur assumes
that the system is in generic position, i.e., no two solutions share a common x-coordinate,
and achieves a bit complexity of Õ(n10(n2 + τ2)) = Õ(N12). The remaining approach,
G_rur, has the same bit complexity as M_rur but relies on computing the GCDs of the
square-free parts of f (α, y) and g(α, y), with α being a projected solution of a polynomial
system. Although, the improved bounds for univariate real root isolation and refinement
can lead to better overall complexity of M_rur (only in a sheared system) and G_rur,
the so obtained results would be considerably weaker than those achieved by Bisolve.
For example, the dependence on n in the final steps of M_rur and G_rur is by a factor
n2 larger when n is dominating. In addition, the analysis of the lifting step in G_rur is
based on the study of a modular GCD algorithm over an extension field from (vHM02).
To improve the total complexity, the authors of (DET09) propose to augment the original
approach by assuming asymptotically fast arithmetic which, for instance, would imply the
use of a subquadratic time Chinese remainder algorithm (CRA). However, upon a closer
look, it appears that the algorithm (vHM02) applies CRA incrementally (along with trial
division), in which case the asymptotically fast methods do not apply. In our complexity
analysis we have tried to stay away from such speculative assumptions.

In his PhD thesis, M. Kerber describes randomized algorithms to analyze the topology
of a single algebraic curve and to compute the arrangements of such curves. The latter
problem can be regarded as a subproblem of solving a bivariate polynomial system. The
detailed analysis shows that it can be solved in an expected number of Õ(n10(n + τ)2) bit
operations; see (Ker09, Section 3.3.4). At the time of writing, a recent work (KS11b)
improves upon the complexity of computing the topology of an algebraic curve. The
paper analyzes a deterministic approach whose complexity evaluates to Õ(n8τ(n + τ)) bit
operations.

5.3 Rasterization of implicit algebraic curves

The problem of accurate visualization of implicitly defined algebraic curves in R2 has
been studied for years. Such curves have a number of prominent features making them
very attractive in many of scientific fields: for instance, to represent various geometric
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objects in a compact form. In this section, we describe an algorithm (EBS09) for geomet-
rically correct visualization of algebraic curves, and discuss how to use the graphics hard-
ware to greatly speed-up the visualization process. As it turned out, the main bottleneck of
the original approach was computing a full Cylindrical Algebraic Decomposition (CAD)
of an algebraic curve (see also Section 5.1.3). We show that, under some mild assump-
tions,1 the algorithm can proceed by just considering the projections of all “topological
events” (self-intersection and extremal points as to be defined later). The latter task can be
easily achieved by the resultant and GCD computation (along with real root isolation), see
also Section 5.1.2 (Project). Note that, the original algorithm has been integrated to the
interactive web application available at http://exacus.mpi-inf.mpg.de, where we
can visualize and explore the arrangements induced by 2D algebraic curves; see (EK08)
for the video presentation about it.

In our discussion, we shall stick to the following outline: first, we state the prob-
lem in a mathematically formal way and shortly overview the existing methods for curve
drawing. Then, we describe the algorithm itself omitting some technical details that are
covered in the original paper. Finally, we run the algorithm on a number of examples
that suppose to create challenges for visualization software: many of such can be found
in (Lab10). To showcase the attained visual quality as well as the efficiency of paral-
lel processing, we shall compare our algorithm with another visualization tools currently
available.

5.3.1 Problem introduction and overview

A real algebraic plane curve can be defined as the zero set of a possibly reducible bivariate
polynomial:

C = {(x, y) ∈ R2 : f (x, y) = 0}, where f ∈ Z[x, y].

Accordingly, the degree of an algebraic curve C is informally defined as the degree of the
supporting polynomial f . Points p ∈ R2 along the curve can be classified in two disjoint
sets as regular and non-regular. Let O f = ( fx, fy) ∈ (Z[x, y])2 be a gradient vector of
curve, where fx =

∂ f
∂x and fy =

∂ f
∂y . Non-regular points are further divided into x-critical

for which f (p) = fy(p) = 0, y-critical when f (p) = fx(p) = 0, and singular when
f (p) = fx(p) = fy(p) = 0. We define a curve arc as a single connected component of
C which has no singularities in the interior and can be bounded by two non-regular end-
points (note that, a curve arc is not necessarily bounded). Additionally, an x-monotone
curve arc is an arc having no x-critical points in the interior. Finally, an isolated singularity
(or solitary point) is a singular point which has no curve arcs attached to it.2

As a task of a geometrically correct visualization of an algebraic curve we ask for a
correct image of the given curve in a rectangular domainD ⊂ R2 up to pixel level or, more
precisely, we request a polyline connecting the colored pixels to lie within a given Haus-
dorff distance from the curve. In this sense, our notion of correct visualization is weaker
than another natural one asking for visualization which reflects the whole curve topology.
That is, in our case, we disregard any possible curve geometry in the regions which fall

1If we refrain from rasterizing isolated singularities, see Section 5.3.1.
2For instance, the one given by an implicit equation: x2 + (y − 3)2 = 0.
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Figure 5.2: Curve arcs can pass very close to each other causing difficulties for accurate curve visu-
alization even if the exact topology is computed (left); our method does not subdivide pixels once the
direction of motion along the curve can be determined uniquely (right).

beyond the pixel level. Existing methods for curve rasterization can be attributed to one
of the following families or a combination of them.

Space covering. These numerical methods are based on interval arithmetic to decide
which parts of a rasterization domain D can be effectively discarded as not intersected
by a curve and which require further subdivision. Classical algorithms can guarantee
geometric correctness of the obtained rasterization but typically fail for singular curves.
More recent works (AM07, BCGY12) subdivide the initial domain in a set of xy-regular
boxes where the topology of a curve is known and a set of isolating boxes of size ≤ ε
enclosing possible singularities. Yet, both algorithms have to reach the root separation
bounds to certify the correctness of the output.

Continuation methods are efficient because only points surrounding a curve arc need
to be considered. They typically find one or more seed points lying on a curve, and then
follow the curve through adjacent pixels/plotting cells. Some algorithms consider a small
pixel neighbourhood and obtain the next pixel based on sign evaluations (Cha88). Other
approaches (MG04, RR05) use Newton-like iterations to compute the points along the
curve. Continuation methods commonly break down at singularities or can identify only
particular ones.

Symbolic methods use projection techniques to capture topological events (tangents
and singularities) along a vertical line. This can be done by computing signed remainder
sequences (EKW07) or Gröbner bases (CLP+09a). While knowing the exact curve topol-
ogy certainly makes the visualization process easier, it does not immediately lead to an
efficient algorithm because symbolic methods do not account for the size of the rasteri-
zation domain D due to their “symbolic” nature: for example, it might happen that the
curve arcs are very tightly packed in D making the rasterization prohibitively inefficient,
see Figure 5.2 (left).

Our method inherits the ideas from all the above classes of rasterization algorithms.
At the beginning, the solutions (α, β) of f (x, y) = fy(x, y) = 0 are projected onto the x-axis
by means of the resultant computation, partitioning the curve (implicitly) into x-monotone
parts. Note that, we do not require computing the entire CAD since connectivity infor-
mation between arcs is not important for visualization. Next, the algorithm computes the
so-called seed points (point representatives) for each x-monotone arc of the curve. This
is done by isolating the real roots of f (x0, y) ∈ Q[x], where x0 ∈ Q is chosen arbitrarily
between every two projected solutions α and α′. Accordingly, the number of real roots
along x = x0 gives the total number of arcs for this x-monotone part. Having a seed
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Figure 5.3: an 8-pixel stepping scheme with numbered directions, plotted pixels are shaded (left);
adaptive approximation of a curve arc (lower one) by a polyline connecting shaded witness (sub-)pixels
(right)

point, we proceed by tracing each arc separately in two opposite directions towards the
end-points. In our hybrid approach, in contrast to (RR05), the roles of subdivision and
curve-tracking are interchanged: that is, the curve arcs are traced in the original domain
while subdivision is employed in tough cases. In each step we examine 8 neighbouring
pixels of a current pixel and choose the one crossed by an arc. In case of a tie, the pixel is
subdivided recursively into 4 parts. Local subdivision stops by reaching a certain thresh-
old and when all curve arcs appear to leave a considered sub-pixel in one unique direction.
From this point on, the arcs can be traced jointly until one of them goes apart. When it
happens, we pick up a correct arc (the one which we rasterize at the moment) again by
isolating the real roots at the pixel boundary, see Figure 5.2 (right).

According to our experiences, we can trace the majority of curves without resorting to
exact computations even if root separation bounds are very tight. To handle exceptional
cases, we switch to more accurate interval methods or increase the arithmetic precision.

5.3.2 Algorithm details

We begin with a high-level description of the algorithm which is based on the original
work (Eme07), see also conference paper (EBS09). Through long-term practical experi-
ence, we have identified and applied a number of small optimizations aimed to improve
the performance and numerical stability of the algorithm. In its core, the algorithm is
based on an 8-way stepping scheme introduced in (Cha88), see Figure 5.3 (left). That
is, from a current pixel we can step to one of its 8 neighbours (in 8 possible directions)
depending on which part of the boundary of an 8-pixel neighbourhood (a large rectan-
gle EBKH in the figure) is cut by the curve arc. The decision is based on checking this
boundary using interval arithmetic, see (EBS09, Section 2) for details.

The algorithm processes each x-monotone curve arc separately. The correctness of
the rasterization is verified by introducing the notion of witness (sub-)pixel: that is, such
a (sub-)pixel whose boundary is crossed only twice by the curve arc to be rasterized and
is not crossed by any other arc. We implicitly assign a witness (sub-)pixel to each pixel
in a curve approximation. Then, if we connect those (sub-)pixels by straight lines, we
obtain a piecewise linear approximation of a curve arc which lies within a fixed Hausdorff
distance from the actual curve image (vanishing locus), see Figure 5.3 (right).

The algorithm starts by picking up a seed point on a curve arc and covering it by a
witness (sub-)pixel such that the arc leaves this (sub-)pixel in two different directions.
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Figure 5.4: Rasterization of a curve arc using adaptive curve tracing (left); processing closely located
arcs: the neighbourhood test for the dark-shaded pixel in the middle succeeds even in the presence of
other arcs nearby (right)

We trace the arc in these two directions from the seed point towards the end-points. In
each step, the algorithm examines an 8-pixel neighbourhood of a current pixel, see Fig-
ure 5.3 (left). If its boundaries are crossed only twice by the arc, we say that the neigh-
bourhood test succeeds, see (EBS09, Section 3.2). In this case, we move to the next pixel
using the direction returned by the test. Otherwise, there are two possibilities:

• the current pixel is itself a witness (sub-)pixel: then we subdivide it recursively into
4 even parts until the test succeeds for one of its sub-pixels or we reach the maxi-
mal subdivision depth.1 In the latter case, the algorithm is restarted with increased
arithmetic precision, see (EBS09, Section 3.5);

• the current pixel has an assigned witness (sub-)pixel: we proceed by tracing from
this witness (sub-)pixel. In both situations tracing at a sub-pixel level is continued
until the pixel boundary is met and we step to the next pixel. The last sub-pixel we
encounter becomes a witness of the newly found pixel.

To give an example, consider plotting a lower arc in Figure 5.4 (left). Curve tracing begins
from a seed point covered by a witness (sub-)pixel α1 in the figure. Its 8-pixel surrounding
box is depicted with dashed lines. The pixel it belongs to, namely α, is immediately added
to the arc approximation. The curve arc leaves α1 in two diagonal directions which cor-
respond to the sub-pixels α2 and β1 in the figure. Suppose, we choose an upper-diagonal
direction from α1 and move to the sub-pixel α2. The neighbourhood test fails for α2 be-
cause another curve arc (red one) comes close at this location. Thus, we subdivide the
sub-pixel α2 in 4 pieces, one of them (α21) intersecting the arc is taken.2 We resume trac-
ing from α21, its neighbourhood test succeeds and we find the next “witness” sub-pixel
(γ1), a pixel it belongs to (γ) is added to the curve trace. We then check the neighbourhood
of the sub-pixel γ1, and so on. The process stops as soon as a termination condition for
the curve end (which will be introduced in the following sections) is satisfied. Then, we
proceed by tracing the arc towards another end-point starting from the saved sub-pixel β1.

Note that, the neighbourhood test, which lies in the heart of the algorithm, is based
on a number of heuristics to further speed-up the curve tracing process. For instance, in

1We define a subdivision depth k as the number of pixel subdivisions, that is, a pixel consists of 4k

depth-k sub-pixels.
2To choose such a sub-pixel we evaluate a polynomial at the corners of α2 since we know that there is

only one curve arc going through it.

152



5.3 Rasterization of implicit algebraic curves

root isolation

root

isolation

Figure 5.5: Arcs are traced together until one of them goes apart: from that point on the tracing can
be resumed on subpixel level after real root isolation (left); an arc suddenly changes the slope at the
location of root isolation (middle); grid perturbation (right)

fact, it is not necessary to check all the boundaries of an 8-pixel neighbourhood, as given
in Figure 5.3 (left), because some directions are prohibited by the x-monotony constraint,
while others can be discarded since we know the direction we came from to the current
pixel. More detailed explanations can be found in (EBS09).

Rasterization of closely located curve arcs. One of the challenges for a curve visual-
ization algorithm, already identified in Section 5.3.1, relates to accurate rasterization of
arcs that lie very close to each other. To deal with such arcs, we augmented the neigh-
bourhood test (the test that determines in which out of 8 directions a curve arc leaves
a current pixel) in a way that we allow a pixel to pass the test as soon as an outgoing
direction can be determined uniquely even if the number of arcs crossing a sub-segment
of the boundary is more than one, see sub-segments AB or GH in Figure 5.4 (right). In
this figure, while tracing the middle arc (colored in blue), the neighbourhood test for the
dark-shaded pixel succeeds because we can determine the direction of motion along the
curve (indicated by an arrow). From this point on, the three arcs can be traced all together
without the need for actually separating them. At the location where one of them goes
apart, we need to pick up the correct arc which can be achieved by real root isolation at
the pixel boundary, see also Figure 5.5 (left). Note that, such a “collective” arc tracing
does not violate our requirement on a fixed Hausdorff distance from the curve because the
arc is guaranteed to lie within an 8-pixel neighbourhood even though this neighbourhood
does not necessarily contain only one arc. In a situation when the arc suddenly changes
the slope at the the point of real root isolation, as shown in Figure 5.5 (middle), we simply
connect the disjoint pixels by a straight line because, by x-monotony constraint, the arc
cannot “escape” anywhere else. Typically, we enable tracing arcs collectively by reaching
a certain subdivision depth (certain subpixel level) which implicitly indicates that the arcs
can be “tightly packed” near this location.

Another difficult situation is depicted in Figure 5.5 (right), where the arcs lie on dif-
ferent sides of the pixel grid, thereby prohibiting a “collective tracing”. For example,
consider the curve f (x, y) = y2 − 10−12 (two horizontal lines) when the grid origin is at
(0, 0). A simple remedy against this is to shift the grid origin by an arbitrary sub-pixel
amount (grid perturbation) from its initial position before the algorithm starts. In this way,
we can ensure with a high probability that the neighbouring arcs are not separated by the
pixel grid.
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Figure 5.6: Clipping a curve arc against the horizontal boundaries of the rasterization domain D (left);
possible situations while detecting the arc’s end-point (right)

Arc clipping and the stopping criteria. Observe that, the x-monotonicity alone does
not allow us to plot curve arcs efficiently because arcs can leave and enter a rasterization
domainD several times as shown in Figure 5.6 (left). Apparently, we do not want to trace
an arc outside the drawing window. To avoid this, we isolate the real roots of f (x, y0) at
y0 = {ymin, ymax}, the horizontal boundaries of D, to compute the intersection points with
the curve.1 Next, the algorithm does matching to assign each point x = αi to a particular
arc. This can be done as follows: we use the bitstream Descartes algorithm (EKK+05)
for each polynomial f (αi, y) to find those roots yi which lie within one pixel from the
horizontal boundaries {ymin, ymax}. Note that, we allow a certain tolerance when matching
the arcs with intersection points because this can only produce an error within a pixel
size. Once the intersection points are processed, each arc can be rasterized using disjoint
segments between each two points: it is only required to determine whether the first
segment lies inside or outside the window (again using root isolation) since “inside” and
“outside” segments are alternating. Finally, remark that, arcs clipping enables us to treat
the arcs of different types (bounded, unbounded or asymptotic) uniformly without the
need for explicitly checking the type. The only exception is vertical arcs which, however,
can be easily detected as outlined below.

To make the algorithm complete, we need work out the missing details of the stop-
ping criteria. Indeed, recall that, we do not have the actual end-points of a curve arc: only
the projections onto the x-axis are available. That is why, we again need to exploit the
x-monotonicity to decide where to stop tracing the arc. Namely, the tracing can be termi-
nated as soon as we reach a (sub-)pixel containing the x-isolating interval of an end-point,
and there exists such a box inside this (sub-)pixel that the curve crosses its vertical bound-
aries only. This last condition is necessary to prevent a premature stopping alarm for arcs
with a decent slope, see Figure 5.6 (right). Unfortunately, this solution is not working
when a curve has a vertical line as a component at some x-coordinate α. Luckily, the
vertical lines can be easily detected by checking if the coefficients of f (α, y) vanish iden-
tically. In the latter case, we simply do not check the vertical boundaries of a terminating
(sub-)pixel but use only the x-monotony constraint as a termination condition.

Finally, there are situations when an arc has a very decent slope with an x-extremal

1To be precise, before root isolation, we extract the square-free part of f (x, y0) because it can happen
that there are double roots along a horizontal line.
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Instance y-degree # x-arcs Project Rasterize Axel Maple

the_sun 19 181 1.35 4.1 0.69 2.37
inf_plus_der 24 80 0.22 5.33 205 4.7
mtaylor_grid 28 280 6.5 4.3 1.85 0.97
dfold_10_6 32 120 0.29 28.5 ? 3.9
flower 16 24 0.06 0.79 0.26 9.6
FTT_3_5_5 30 200 0.5 58.5 104 1.4
octagon 14 436 1.7 8.6 535 22.9
spider 28 304 11.2 26.1 709 8.4
kushnirenko 47 84 18.1 25 ? 6.1

Table 5.4: Execution time in seconds for curve rasterization. ‘y-degree’: degree of a defining polynomial
in y-variable; ‘# x-arcs’: the total number of x-monotone arcs of a curve; ‘Project’: projecting the event
points of a curve onto the x-axis; ‘Rasterize’: visualization using our method; the last two columns:
visualization using Axel and Maple 14, respectively.

end-point (the rightmost picture in Figure 5.6). Here, it might happen that the algorithm
overlooks the actual end-point and stops tracing later because, for our stopping criteria to
work, a terminating pixel must to be subdivided sufficiently many times to ensure that the
vertical boundaries being checked are quite narrow. However, the algorithm is not forced
to subdivide a pixel if nothing “special” happens around an x-extremal point. Still, this
fact certainly does not violate our constraint on a fixed Hausdorff distance from the curve.

5.3.3 Benchmarks and comparison
The experiments have been conducted on our desktop machine with 2.8GHz 8-Core Intel
Xeon W3530 having 8 MB of L2 cache and GeForce GTX580 graphics processor under
64-bit Linux platform. Similar to Bisolve benchmarks in Section 5.1.4, we have used
Gmp 5.0.1 library for exact number types and RealSolving (Rs) package1 to speed-up the
univariate root solving. Note that, the original approach (EBS09) has been implemented
within Cgal (Computational Geometry Algorithms Library, www.cgal.org). Owing to
generic programming style, we have been able to easily exchange the relevant parts of the
algorithm to replace a curve analysis (computing a full CAD) with a “lite” version where
only the projections of topological events of a curve are computed (see Section 5.3.1).

We have compared our approach with the algorithm (AM07) from Axel 0.5.32 and im-
plicitplot from Maple 14. Although, the both competing algorithms are, in fact, numeric
subdivision methods,3 it was nevertheless interesting to compare the resulting visual qual-
ity and the running times with those for our approach. To obtain smooth curve images
with Axel, we have varied the accuracy parameter ε between 5 · 10−4 and 5 · 10−7 depend-
ing on the curve, while the “feature size” asr has been set to 10−2. Maple’s implicitplot
has been configured with the parameters: resolution = 500 and numpoints between 105

and 106, also to get a satisfiable image quality. Note that, neither of the subdivision algo-
rithms can set the precision parameters adaptively, thus we had to play around with the
options to find some compromise between image quality and the running time. For our
algorithm the resolution (the number of pixels in a rasterization domain D) has been set

1Gmp: http://gmplib.org, Rs: http://www.loria.fr/equipes/vegas/rs
2Subversion repository is available at svn://scm.gforge.inria.fr/svn/axel.
3The symbolic approach described in (AM07) is not available in Axel.
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k Project Rasterize Cxy

7 0.25 0.16 14.2
8 0.37 0.17 22.1
9 0.54 0.25 27.6
10 0.82 0.2 < 180
11 1.18 0.34 n/a
12 1.67 0.29 n/a

Table 5.5: Execution time in seconds to plotting the curve (x2 + y2)k − 4x2y2 − 0.01 = 0 inside a box
[−1, 1] × [−1, 1] for different values of k using our approach and the algorithm Cxy, respectively. Cxy
timings are taken from (LY11). The curve plot for k = 11 is shown to the right.

to 640 × 480. We have also partially compared our algorithm with a certified subdivi-
sion approach, called Cxy, from (LY11). Here, the main concern was the computing time
because the algorithm Cxy computes isotopic approximation of (non-singular) algebraic
curves. Unfortunately, we have not been able to compile the source code,1 and that is why
we have considered only the examples mentioned in the authors’ work.

The running times for curve rasterization are listed in Table 5.4. For our approach,
we have measured the time for projecting the “event points” and actual visualization sep-
arately. The number of x-monotone arcs rasterized by our algorithm is given in the 3rd
column of the table. The curve images are shown in Figures 5.7 and 5.9. In the figures,
different x-monotone arcs are rasterized with different colors. Additionally, Figure 5.10
provides zooming at certain singular points to demonstrate that our algorithm indeed pre-
serves geometric correctness of a curve plot at any resolution. From Table 5.4, we see
that Axel is particularly fast for curves having simple singularities (where just four curve
branches meet at one point), but it experiences a large slowdown when the curve has a
complicated topology or curve arcs are very badly separated. Also, we did not manage to
produce a plot for ‘dfold_10_6’ curve since Axel was constantly reporting floating-point
error. What concerns Maple’s implicitplot, it works reasonably fast for all instances we
tried. It is not surprising because, unlike Axel, this algorithm is based on a pure numerical
subdivision and does not attempt to recover any topological information of a curve. This
fact also find a confirmation in the obtained curve images: we see that Maple is unable to
adequately rasterize the curves ‘octagon’ and ‘spider’, see Figure 5.9. Zooming in Fig-
ure 5.10 reveals a hidden structure of these curves where each arc is essentially composed
of two arcs passing very close to each other: this makes an accurate visualization very
challenging. In contrast, Axel produces more accurate plots (which, however, are still
not free from some visual artifacts). The last curve listed in Table 5.4, ‘kushnirenko’,
corresponds to the zero set ofA-Discriminant appearing in (DRRS07) for the purpose of
disproving the Kushnirenko’s conjecture.2 Rasterization using our algorithm and Maple
(at increasing resolution) is provided in Figure 5.8. The comparison of visual quality
again shows the superiority of our approach. Axel again has failed to visualize this curve
(reporting floating-point error).

To compare with the Cxy approach, we have rasterized a curve f (x, y) = (x2 + y2)k −

4x2y2 − 0.01 for different values of k from 7 to 12. The running times together with the

1It is available at http://cs.nyu.edu/exact/papers/cxy
2The curve equation is available at: http://www.math.tamu.edu/~rojas/haas3disc
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curve image for k = 11 are provided in Table 5.5. Note that, in (LY11, p. 22) it was
reported that our approach times out for k ≥ 7. This was certainly caused by expensive
symbolic operations used in the original approach (EBS09) to compute the CAD since, by
looking at the curve image, it is clear that the visualization should not be of any challenge.
Indeed, from the timings we now see that this example presents no difficulties to our
rasterization algorithm.

Still, one of the shortcomings of our approach relates to the fact that it has to process
x-monotone arcs of a curve separately: meaning that, we have to find a seed point for
each of them, refine it sufficiently many times and, in addition, check if an arc crosses
the boundaries of a rasterization domain. Now, imagine that the curve decomposes into
hundreds of small arcs, which, however, are not small enough to be replaced by a single
pixel. Then, our algorithm would have to use all the complicated algebraic machinery
(real root isolation, refinement, etc.) for each of them. This situation is well-observed
in the experiments for the curves ‘FTT_3_5_5’, ‘the_sun’ and ‘mtaylor_grid’. Here,
we notice that the rasterization complexity (see column 5 in Table 5.4) is not the result
of a complicated curve topology but is mainly determined by the fact that the algorithm
spends too much time for the above mentioned operations. One possible solution to this
problem would be to enable tracing arcs across the actual end-points: that is, stop only
by hitting the boundary of a rasterization domain or when tracing is “no longer possible”.
Certainly, the meaning of “no longer possible” would require further clarification. Ad-
ditionally, we would have to keep track of those pixels which have already been plotted.
Another reasonable idea is to have an algorithm which already returns a “minimal set” of
x-monotone arcs: indeed, many arcs computed in the projection step can be merged to-
gether to produce larger arcs which still do not violate x-monotony constraint. However,
looking from the other perspective, our visualization algorithm can directly profit from
multi-core processing due to the fact that each arc is traced individually.

In summary, we see that the combination of symbolic-numeric methods used by our
algorithm works best in practice since it allows us to obtain geometrically correct raster-
ization in all situations while, at the same time, does not lead to large performance loss
(as in the case of Axel). From the timings in the ‘Project’ column in Table 5.4, we also
observe that the “symbolic phase” of our approach has become negligibly cheap, even
for complicated instances: compare with the original benchmarks in (EBS09, Section 4).
This is because we are no longer required to compute the whole topology graph of a curve,
and thus can take a full advantage of the GPU algorithms and fast real root isolation.

157



5 Applications

the_sun inf_plus_der mtaylor_grid dfold_10_6

Figure 5.7: From top to bottom: curve images rendered using our approach, Axel and Maple’s implicit-
plot, respectively.

Figure 5.8: Visualization of A-Discriminant appearing in the counter-example of Kushnirenko’s Con-
jecture, see also (DRRS07). Top row: our method; bottom row: Maple’s implicitplot.
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flower FTT_3_5_5 octagon spider

Figure 5.9: From top to bottom: curve images rendered using our approach, Axel and Maple’s implicit-
plot, respectively.

inf_plus_der flower octagon spider

Figure 5.10: Zooming at singularities for selected curves listed in Table 5.4.
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6 Conclusion and open problems

Doing exact computations with polynomials on the GPU is not as widely practiced as, for
instance, parallel computing with floating-point arithmetic adopted in many engineering
fields. This application area of graphics accelerators is a quite new and very fast evolving.
Without repeating what has already been said for concluding remarks in the previous
chapters, we can identify the following directions for future work.

First, there is a quite natural demand in extending our algorithms to higher dimensions
in order to be able to handle algebraic objects of greater complexity. Though, this seems
to be quite straightforward at first glance, if we recall that the modular approach already
works for multivariate polynomials of arbitrary dimension, we anticipate that the actual
realization on the GPU could be a matter of large technical difficulty. This is because
the modular approach is based on the recursive application of homomorphisms which, in
CUDA language, would be equivalent to a series of kernel calls with intricate CPU control
and data flow. Furthermore, for multivariate polynomials with three or more variables, an
efficient “sparse” representation already becomes necessary because such polynomials
quite often have many zero terms.1 On the CPU, this problem is “transparently” solved
using conventional Stl data structures and C++ template mechanism. While in the plain
memory of a graphics accelerator, this would imply development of some versatile data
structures with shifts and offsets to mark the locations of non-zero polynomial coefficients
which are hard to maintain and debug.

Additionally, there are many scientific problems, especially in computational geome-
try and related fields, where performing all computations with exact arithmetic is, albeit
feasible, proven to be an overkill. One of the classical examples from computer algebra
is the task of real root isolation. Therefore, a natural question comes up as to whether it
is possible to perform multi-precision (BigFloat) computations on the GPU ? Although,
the general answer is negative, there is a number of ways in which we can “model” the
operations on multi-precision numbers on the graphics card. In our opinion, one of the
most promising approaches relates to the use of a Hybrid Number System (HNS). The
latter one can be viewed as the generalization of RNS (Residue Number System, see
also Section 2.2.2) where numbers are represented using both weighted and residue no-
tations and the expansion/contraction of either part of the representation is provided; see,
e.g., (HS04, BP92). In such a way, operations on mantissas (most significant bits) of
BigFloat numbers are realized in the RNS while magnitude comparison, sign detection,
etc. can best be performed on weighted representation. Moreover, we can add/drop any
number of bits of the weighted part (to control the precision) without disturbing the RNS.

1Recall that, a dense multivariate polynomial in d variables of total degree bounded by n can have up to
nd monomials.

161



6 Conclusion and open problems

In effect, this approach has many parallels with the dynamic RNS widely adopted in cryp-
tography, where one is allowed to change the number of moduli (dynamic range) used in
the representation at a runtime; see (Gon91, Sod86, BDK01). Besides that, there are prob-
lems where the set of required operations on BigFloats are restricted to that of addition,
subtraction, bit-shifts and comparison. In the latter case, we can do well without us-
ing residue arithmetic at all. Indeed, addition/subtraction operations are straightforward
to parallelize if we employ some redundant representation to accumulate carry/borrow
propagations and, in the end, use parallel reduction to update the result in one sweep.
However, this approach is closely tied to a concrete problem at hand.

It is also quite clear that, in order to exploit the advantages of parallel processing at
full, the target algorithms must augmented in such a way to minimize the cost of sequen-
tial steps (for instance, using cheap approximate computations whenever possible) while
letting the GPU do the hard work. Often enough, it requires looking at a seemingly well-
studied problem from a new perspective. In this respect, our approaches for the solution
of a system of polynomial equations, topology computation of algebraic curves and curve
visualization provide a good exposition. That is why, another important research direction
would be developing algorithms that can outsource the main computationally expensive
tasks to the GPU and, at the same time, concentrate on the optimization of the remaining
sequential routines. We also wish to continue our work on the complexity analysis: in par-
ticular, we are quite confident that our recent complexity estimates obtained for Bisolve
(see Section 5.2) can be further extended and generalized to BiCurveAnalysis.

Lastly, it probably makes sense not to become attached to the GPUs only but consider
other architectures for massively-parallel computing: luckily, this sector of computer in-
dustry grows quite rapidly now. Among possible alternatives, we distinguish the Intel’s
MIC (Many Integrated Core) architecture (Ska10) which inherits many design decisions
from the former Larrabee project. This architecture is built upon x86 in-order proces-
sor cores equipped with 16-lane VPUs (Vector Processor Unit, somewhat similar to the
GPU’s Multiprocessor). Intel’s MIC is supposed to be interfaced through OpenCL and
has several features, lacked on the current GPUs, including cache coherency among all
processor cores and support for scatter/gather operations. Cache coherency, for exam-
ple, can greatly simplify the use of block-level parallelism since the results of computa-
tion are transparently shared between all cores, while scatter/gather functionality allows
concurrent data accesses at non-contiguous addresses without a noticeable overhead. A
commercial release of the chips is planned for late 2012.
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