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Abstract

This thesis presents an exact and complete approach for visualization of seg-
ments and points of real plane algebraic curves given in implicit form f(x, y) = 0.
A curve segment is a distinct curve branch consisting of regular points only. Vi-
sualization of algebraic curves having self-intersection and isolated points consti-
tutes the main challenge. Visualization of curve segments involves even more dif-
ficulties since here we are faced with a problem of discriminating different curve
branches, which can pass arbitrary close to each other. Our approach is robust
and efficient (as shown by our benchmarks), it combines the advantages both of
curve tracking and space subdivision methods and is able to correctly rasterize
segments of arbitrary-degree algebraic curves using double, multi-precision or
exact rational arithmetic.
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Chapter 1

Introduction

Problem statement

Planar implicit curves are of great interest

Fig 1.1: Erdõs lemniscate of de-
gree 16 decomposed into sweep-
able segments. Each segment is
drawn in its own color

in Computer-Aided design and Computer
Graphics. They are very useful because of
their ability for general function descrip-
tion, for example, to represent the inter-
section of two parametric surfaces in R3.
A plane algebraic curve is defined as the
zero set of a bivariate polynomial Z(f) =
{(x, y) ∈ R2 : f(x, y) = 0} and might have
singularities such as cusps, self-intersections
and isolated points, which constitute the in-
teresting cases for us.

Algebraic curves can be decomposed into a
set of arcs, such that each of them does not
contain singularities in the interior. We call
such arcs segments of an algebraic curve (as
an example see Figure 1.1). Computing and
visualizing these segments is an important fundamental operation in Compu-
tational Geometry. For example, one can draw polygons whose boundaries are
defined by segments of generic algebraic curves and perform operations on them.

The problem of visualization of implicit curves is well-studied and there are
several classes of algorithms proposed in the literature. Some of them focus at
special types of algebraic curves (such as rational curves [AG91, Blo88] or curves
defined by fixed-degree algebraic polynomials), or can handle only special kinds
of singularities [MY95], another can visualize any implicit function but sacrifice
exactness and may incorrectly rasterize some details.
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Moreover, to the best of your knowledge, none of them can visualize distinct
curve segments. This is no surprise, since for visualization of complete curves
the local curve’s topology does not play a vital part. Indeed, most of the vi-
sualization algorithms interpret a curve as a complete object, without decom-
posing it into a set of potentially smaller objects. Whereas drawing segments
separately imposes additional constraints, because the visualization process de-
pends on the actual curve structure: here several curve segments can lie very
close to each other, and discriminating them is, in some cases, a non-trivial task.

The main contribution of this thesis is to provide an algorithm and its imple-
mentation for visualizing segments and points of arbitrary-degree plane algebraic
curves. Our algorithm is exact, since our output is a pixel approximation of the
true mathematical result. It is reasonable that some details might be not visible
at a certain resolution, but as the curve topology is known, these small details
are exposed at a higher resolution.

Furthermore, our approach is complete, meaning that we allow as input alge-
braic curves of arbitrary degree and can handle highly degenerate cases: essen-
tially, when the distance between two curve branches lies beyond the limits of
double-precision arithmetic. We developed a technique to separately visualize
curve segments located arbitrarily close to each other using only double precision
arithmetic in most cases. If this does not suffice we switch to multi-precision
floating-point or exact rational computations.

Computational efficiency is also one of the important goals in our approach. The
most time-critical part of segments visualization is separation of them at loca-
tions where several branches almost coincide and the difference between them
is unobservable. In these cases we stop space subdivision at a certain level,
beyond which the curve branches are inseparable by sight. From this point we
continue tracing the curve branches in a one “bundle” without any impact on
the visual quality. At location where the curve branches again go apart we pick
up the right one by using a real root isolation.

Our method is essentially a composite of the ideas taken from space subdivision
and curve tracking methods equipped with techniques facilitating separation
of closely located curve branches. We use the exact method to decompose a
curve into a set of x-monotone segments from the AlciX library [Ker06] as a
pre-processing step. X-coordinates of segments’ end-points are given by real al-
gebraic numbers which can be refined up to an arbitrary precision. Having the
exact computation of the curve’s topology is an intrinsic requirement for correct-
ness and robustness of our approach. We operate on distinct segments delimited
by end-points which can also lie at infinity. We employ pixel techniques to al-
ways stay within the level of detail given by the current pixel resolution and
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omit drawing of potentially imperceptible parts.

If we focus only on drawing x-monotone segments – which is the main objective
of this work – then a straightforward solution, for example, could be as follows:
“for each x coordinate within the range between two segment’s end-points find
an appropriate y coordinate by isolating roots of a univariate polynomial at this
x and picking up the one corresponding to our segment.1”

Although rather trivial, this solution is inefficient by definition since it requires
to isolate real roots of a univariate polynomial at every pixel comprised the
approximation of a curve branch. We do not consider such “heavy weapons”
any further. The interested reader can find a detailed description of real root
isolation technique in [EKK+05, RZ04]. Moreover, the algorithm presented in
this work is able to visualize more “general” segments which are not necessarily
x-monotone.

Related Work

Algebraic curves were widely adopted in fields of Computational Geometry, Ge-
ometric Modeling, Computer Graphics, etc. That is why an extensive research
was carried out to develop visualization algorithms for algebraic curves. These
algorithms can be grouped into three main classes which we consider now.

Representation conversion. The idea behind this class of algorithms is to
find a parametric representation for an implicit curve provided that it is
easier to render parametric curves [AG91, Blo88]. Only rational curves
(the curves with geometric genus2 zero) admit a global parameterization.
However, a local analytic parameterization always exists in a neighbour-
hood of a regular point of an implicit curve. This is a point p such that
f(p) = 0 and Of(p) 6= 0. This allows us to visualize rational implicit
curves by means of algorithms for visualization of parametric curves.

Space subdivision. A space subdivision algorithm partitions a space into sub-
spaces recursively, discarding those subspaces that do not intersect the
curve [MG03, MG04b, Tau94]. The recursive subdivision terminates when
the resulting approximation to the curve by a set of small subspaces is
within a given tolerance (a pixel size). Robust algorithms can be imple-
mented by using algebraic techniques and interval (or affine) arithmetic
[MSV+02, FS04], algebraic and rational techniques [KM95], floating-point
arithmetic [She96]. In theory, the advantage of this class of algorithms
relies on the fact that they can render implicit functions of arbitrary com-

1It is supposed that we have enough information to uniquely describe a curve segment.
Later we give three definitions of a curve segment, one as the refinement of another, which
clarifies the statement.

2For definition of geometric genus see [Gib98].
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plexity but, typically, they are more computationally expensive than al-
gorithms from the other classes and not applicable to segments.

Curve tracking. The idea here is to compute a sequence of points in a way
similar to parametric curves. This method has its roots in the Bresen-
ham’s algorithm for rendering circles, which is basically a continuation
method in image space. Some methods start at a seed point on the curve,
then look at the adjacent pixels to find out if any of them is the next
pixel along the curve, thus exploiting the discrete nature of pixel im-
ages [Cha88]. Other methods, having a current point, consider a small
(circular) neighbourhood of it and use some numeric methods (for exam-
ple, Predictor-Corrector and False Position method) to obtain the next
point along the curve [MG04a, MY95]. Altogether, these methods are at-
tractive because they concentrate effort on where it is really needed and
may adapt the computed approximation to the local geometry of the curve
(for example, with respect to the curvature). Unfortunately, some of them
break down at singular points, another can handle singularities of special
types only. Besides that, this approach requires a complete set of seed
points covering the whole curve which is not trivial to produce.

There are a lot of approaches for the visualization of implicit curves in the liter-
ature. Each of them has its own advantages and drawbacks. Below we describe
why no one of them can be used to visualize curve segments.

Representation conversion algorithms are applicable to only a small family of
algebraic curves and, therefore, are not considered further in this work.

Space subdivision algorithms are well-suited to render complete curves but un-
able to rasterize a certain curve segment, since they look at a curve “entirely”
and without exploiting the continuity of curve segments.

In spite of the fact that curve tracking algorithms are basically continuation
methods, rendering of complete curves is still less constrained. Indeed, in am-
biguous situation, when several curve branches are discovered surrounding the
current tracking point, one can continue tracking any of these branches, saving
the remaining ones beforehand. In case of drawing curve segments, such uncer-
tainty is intolerable.

Furthermore, even this method works not in all situations. Different authors
[MY95, MG04a, ZsYzMj+06] suggest different approaches how to deal with
multiple points during curve tracing. But all of them concur in how to detect
multiple points. This can be explained as follows: “divide the circle around the
multiple point into n sufficiently small equal parts to get the points P0P1 . . . Pn−1

on the circle. If the function f(x, y) has sign change between points Pi and Pi+1

where i = 0, 1, . . . n− 2 there is a segment of the implicit curve passing through

12
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Fig 1.2: A “nice” multiple point (a); a multiple point with closely located
branches (b); and a situation where two closely located cusps look like a multiple
point (c)

this small arc PiPi+1. If the number of such arcs greater than 3 the centre of
the circle is the multiple point”.

It surely works for “nice” cases as depicted in Figure 1.2(a) but as curve branches
come closer to each other it might happen that no sign changes will be regis-
tered, see Figure 1.2(b). The statement ”divide into n sufficiently small equal
parts” requires further specification. By the same token, there could be some
cases outwardly similar to a singular point but, in fact, consisting of two cusps
(Figure 1.2)(c).

Our approach combines ideas of curve tracking (to exploit locality and con-
tinuation) and space subdivision methods (to separate closely located curve
branches). We rely on the approach originally introduced by [Cha88]. In par-
ticular, in each step of the algorithm we have the current pixel (already drawn)
and 8 possible directions to follow (this is also called “8-way stepping scheme”,
see Figure 1.3)(a).

In the original algorithm the next pixel is chosen from among eight nearest
neighbours of the current pixel by searching for a sign difference in two function
evaluations at midpoints between consecutive pixels. However, in some cases
this method can fail. That is why, we use range analysis instead of sign compu-
tations, which result in more trustworthy curve intersection tests.

Local subdivision solves the problem of discarding neighbouring curve branches.
Whenever the neighbourhood test fails to determine the next pixel – because
several curve branches occurred in the neighbourhood – we apply the subdivi-
sion. As a result, we end up with a sequence of subpixels approximating our
curve branch – see Figure 1.3(b).
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Fig 1.3: 8-way stepping scheme, capital letters define the directions: S - south,
W - west, NE - north-east and so on (a); and approximation of a curve branch
using adaptive subdivision (b)

Outline

The content of the Thesis consists of four chapters. In Chapter 2 we present the
Mathematical background. First, we give a definition of algebraic curves and
list the types of singularities. Then, we formally define a curve segment to clar-
ify the problem statement. Afterwards, we discuss advantages and drawbacks
of various range analysis methods, and at the end of this chapter we present a
technique to count the number of curve branches crossing a line-segment based
on the Mean Value theorem.

Chapter 3 is devoted to the Algorithm itself. We give a pseudo-code for the
main procedure and discuss the 4- and 8-way stepping schemes developed to
slightly different approaches. We point out the differences between them and
survey the advantages of each. The chapter ends with algorithm details such as
finding “seed” points, stopping criteria, handling isolated points and it discusses
important optimizations such as tracing of visibly coincide branches.

In Chapter 4 we give an introduction to our Implementation. We describe
the overall structure and different parts of the Exacus library, outline some
important details of the implementation, give running time measurements and
compare our algorithm with a sample implementation of the space subdivision
approach.
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The Thesis ends with Conclusions for the accomplished work and outlines the
possible directions of future research.
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Chapter 2

Mathematical background

Algorithms for visualization of algebraic curves rest on a large number of alge-
braic operations. In this chapter we will introduce the algebraic concepts and
mathematical tools that are fundamental for our computations and enable us
to deal with algebraic curves.

First, we will give necessary notations and definitions to make our work self-
contained and accessible to the non-experienced reader. Afterwards, we give an
overview of range analysis methods and formulate the algorithmic ideas under-
lying our approach.

2.1 Algebraic curves

The objects we consider and manipulate in our work are real plane algebraic
curves represented by polynomials in two variables with real coefficients. A
non-zero bivariate polynomial f ∈ R[x, y] can be written as:

f(x, y) =
n∑

i=0

m∑
j=0

aijx
iyj .

Such a polynomial can be treated in two different fashions. In hierarchical
representation, we treat f as a univariate polynomial in the outermost variable
y with coefficients in R[x]. In this case we define the degree of f with respect
to the outermost variable y as (the x-degree can be defined in a similar way):

degy(f) = max{j : j ≤ m,
n∑

i=0

aijx
i 6= 0}.

In flat representation, we consider f as a sum of its monomials aijx
iyj with

aij 6= 0. The total degree of f is defined by:

deg(f) = max{i + j : i ≤ n, j ≤ m,aij 6= 0}.
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If f is a nonzero constant, then f has degree 0.

We define an algebraic curve in the following way: Let f be a polynomial in
R[x, y]. We set C(f) = {(α, β) ∈ R2 : f(α, β) = 0} and call C(f) the algebraic
curve defined by f . Remark that if two algebraic curve C(f) and C(g) have the
same real zero sets it does not necessarily imply that polynomials f and g are
the same up to multiplication of scalars. This is only true for curves without
multiple components which have infinite real zero set, however there are curves
without real zero set at all.

For an algebraic curve C(f) we define its gradient vector as Of = (fx, fy) ∈
(R[x, y])2 with fx = ∂f

∂x and fy = ∂f
∂y . With the help of the gradient vector we

can characterize points lying on the curve C(f). We call a point (α, β) ∈ R2 of
C(f) singular if (Of)(α, β) = (fx(α, β), fy(α, β)) = (0, 0). Accordingly, the re-
maining points are called non-singular or regular. The geometric interpretation
is that for every point (α, β) of C(f) there exists a unique line tangential to the
curve C(f). This tangent is perpendicular to (Of)(α, β). Non-singular points of
C(f) are the ones that admit a unique tangent line to the curve. The remaining
points, such as self-intersections and isolated points, we call singularities. There
are only finitely many singular points. In particular, an algebraic curve defined
by a polynomial of degree d has at most (d− 1)(d− 2)/2 singular points.

Let (α, β) be a non-singular point of C(f). We call (α, β) an extreme point if
it has a vertical tangent, i.e., (Of)(α, β) = c · (1, 0). We refer to singularities
and extreme points of C(f) collectively as the critical points of C(f). The set
of this critical points is exactly the set of intersection points of the curves C(f)
and C(fy).

2.2 Curve segments

Having a comprehensive classification of the curve points, we are able now to
give an adequate definition of a curve segment which is necessary to understand
the overall problem correctly. We start with the most intuitive definition, then
refine it further to satisfy the problem requirements.

Definition 2.1. Regular segment. A regular curve segment is a single con-
nected branch of an algebraic curve consisting of regular points only, bounded by
two end-points, which are not necessarily regular.1

The second definition refines the previous one in a way that segments do not
have critical and extreme points inside (in other words, they are x-monotone):

1Please note that one (or two) of segment’s end-points can lie at “infinity”. In this case
we will call the segment unbounded.
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Fig 2.1: Partition of a curve into segments with corresponding arc-numbers

Definition 2.2. x-monotone segment. An x-monotone curve segment is a
single connected branch of an algebraic curve consisting of non-critical points
only, bounded by two (possibly critical) end-points.

The third refinement partitions a curve into a set of potentially smaller seg-
ments suitable for Gaps (Generic Algebraic Curves and Surfaces, for details see
section 4.1.2).

Definition 2.3. Sweepable segment. A sweepable curve segment is a sin-
gle connected branch of an algebraic curve defined by the range of x-coordinates
between two critical points and an arc number - a rank of a segment amongst
all segments with the same x-coordinates range, which is constant in segment’s
interior.

Note that the requirement to have a segment defined between two consecutive
critical points immediately implies x-monotonicity as well as the fact that it con-
sists of non-critical points only. In Figure 2.1 one can see a decomposition of the
curve into sweepable segments. Each vertical line indicates a self-intersection
or extreme point. Segments are assigned the arc-numbers from bottom to top,
starting with 0.

One can notice, that the segments do not necessarily have critical end-points.
Such a decomposition of a curve into segments admits natural ordering of them:
we can enumerate segments in lexicographical order, first by the starting x-
coordinate, and then by the arc-numbers among all segments with the same
x-coordinate range.

The algorithm presented in this work can render segments meeting the first def-

18



inition, but, strictly speaking, this definition is not of much use, since segments
satisfying it can be arbitrary complex in the interior. The effort of rendering
such complex segments is comparable to the effort of rendering a complete curve,
which is not the main goal of this work.

Further we will refer to the last definition of a curve segment unless it is stated
explicitly.

2.3 Range analysis

The aim of range analysis is to find the range of a function (usually a polyno-
mial) in one or several variables over an input interval. In practice, finding an
exact range is difficult, and it is more usual to find a range which includes the
actual range. Information about the range of a function f , and related functions
such as its partial derivatives, inverse, etc. are of considerable interest to people
working in the fields of numerical and functional analysis, differential equations,
linear algebra, approximation and optimization theory and other disciplines.

Range analysis has many important applications in CAGD and computer graph-
ics, including the plotting and localisation of implicit curves and surfaces.

First we give an overview of the classical technique of Interval Arithmetic (IA),
then we consider Affine Arithmetic (AA) which is more accurate but still has
essential drawbacks. And finally, we describe Modified Affine Arithmetic (MAA)
[SMW+] which is known to be the one of the best methods for polynomial
evaluation over an interval. This is due to the fact that it does not suffer
from under-conservatism problem as it obeys all commutative, associative and
distributive laws.

2.3.1 Interval arithmetic

Interval arithmetic is a technique for numerical computation where each un-
certain quantity is represented by an interval of floating-point numbers. These
intervals are added, subtracted, multiplied, etc. in such a way that each com-
puted interval is guaranteed to contain the unknown value of the quantity it
represents. More precisely, a quantity x ∈ R is represented by an interval [a, b],
where a and b are floating-point numbers (including ±∞), such that a ≤ x ≤ b.
If x and y are intervals and � denotes one of the arithmetic operators +,−,×
and /, then x� y is defined by:

x� y = {x� y | x ∈ x, y ∈ y}

Primitive arithmetic operations can be extended to intervals:
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[a, b] + [c, d] = [a + c, b + d],
[a, b]− [c, d] = [a− d, b− c],
[a, b]× [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)],

[a, b]/[c, d] = [a, b]× [1/d, 1/c] provided 0 /∈ [c, d].

Note that lower bounds are rounded downwards and upper bounds - upwards.
Similar formulae can be given for extending the elementary functions to inter-
vals.

The natural interval extension of a bivariate polynomial f(x, y), denoted by
f(x,y), is obtained by replacing each occurrence of x and y in f(x, y) by inter-
vals x and y, and evaluating the resulting interval expression using the above
definitions. The result is itself an interval.

Unfortunately, the range estimates given by standard interval arithmetic tend
to be too large, especially in complicated expressions or long iterative computa-
tions. The main reason for the overestimation is that IA implicitly assumes the
arguments (the quantities) to primitive operations to be independent from each
other. Thus, if there are any mathematical constraints between those quantities
then not all combinations of values in the given intervals will be valid. In that
case, the interval obtained by Interval arithmetic may be much wider that the
exact range of the result quantity.

Example 2.1. To see this, let us compute x2 over an interval [x] = [−1, 2]. The
application of the above rules gives [−2, 4], while the exact range for [x]2 is [0, 4].

A significant property of IA is that the form in which the polynomial is ex-
pressed can affect the result. There are modifications of the standard IA which
exploit this property such as IA using centered form originally introduced by
Moore [Moo66] and Horner form.

Despite the fact that rearranging the function can give tighter bounds on the
result, IA still is not as accurate as Affine arithmetic, which we consider next.

2.3.2 Affine arithmetic

Affine arithmetic [FS04] is an alternative approach to IA that is more resis-
tant to overestimation, since AA keeps track of first-order correlations between
computed and input quantities; these correlations are automatically exploited in
primitive operations, such that the boundaries obtained by applying AA in most
cases are much tighter than the ones obtained with IA. Moreover, AA implicitly
provides a geometric representation for the joint range of related quantities that
can be exploited to increase the efficiency of interval methods.
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Below we explain the main concepts of Affine arithmetic. In AA a quantity x
is represented by an expression of the form:

x̂ = x0 + x1ε1 + · · ·+ xnεn,

which is an affine expression (first-degree polynomial) on the noise symbols εi

with floating point coefficients xi, in other words, an affine form. Each noise
symbol εi is a symbolic real variable whose value is unknown and lies in the in-
terval [−1;+1] and is independent from the other noise symbols. The coefficient
x0 is called the central value of the affine form x̂. The coefficients x1, . . . , xn

are called the partial derivations associated with the noise symbols ε1, . . . , εn in
x̂. The number n of noise symbols depends on the affine form: different affine
forms can use a different number of noise symbols, some of which may be shared
with other affine forms. New noise symbols are created during computation.

Affine forms provide interval bounds for the corresponding quantities: if a quan-
tity x is represented with the form x̂ as above, then x ∈ [x0−rx, x0 +rx], where
rx = |x1|+ · · ·+ |xn| is called the total deviation of x̂. Conversely, if x ∈ [a, b],
then x can be represented with the affine form

x̂ = x0 + x1ε1,

where x0 = (b + a)/2 and x1 = (b − a)/2. That is, AA algorithms can input
and output intervals, and so AA can be used as a replacement for IA. However,
affine forms give additional information that can be exploited to further bound
the joint range of quantities.

As for interval arithmetic, computations in AA are performed by first extending
primitive operations and functions to operate on affine forms, and then combin-
ing these primitives to compute arbitrarily complex functions. Given two affine
forms:

x̂ = x0 + x1ε1 + · · ·+ xnεn

ŷ = y0 + y1ε1 + · · ·+ ynεn

and three real numbers α, β, and γ, then:

αx̂ + βŷ + γ = αx0 + βy0 + γ + (αx1 + βy1)ε1 + · · ·+ (αxn + βyn)εn.

Extending non-affine operations requires using good affine approximation to the
exact result and append an extra term to bound the error of this approximation.
Here we consider only multiplication, which is basically only one non-affine
operation required to polynomial range analysis. The product of two affine
forms is:

x̂ · ŷ = x0y0 +
n∑

i=1

(x0yi + y0xi)εi +
n∑

i=1

xiεi ·
n∑

i=1

yiεi.
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So we can write the following affine form for the product:

x̂ · ŷ = x0y0 +
n∑

i=1

(x0yi + y0xi)εi + zn+1εn+1,

where

|zn+1| ≤

∣∣∣∣∣
n∑

i=1

xiεi ·
n∑

i=1

yiεi

∣∣∣∣∣
is an upper bound for the approximation error. The simplest bound is

zn+1 =
n∑

i=1

|xi| ·
n∑

i=1

|yi|.

which is at most four times the error of the best affine approximation, but is
very easily computed. For details on approximation of non-affine operations
see [FS04].

As mentioned before, the affine form are more stable against overestimation
problem, which has its roots in dependency between variables. To be precise,
two or more affine forms can share noise symbols (a noise symbol is shared when
it appears with a nonzero coefficient in all affine forms). When this happens,
the quantities represented by those affine forms are not completely indepen-
dent: they have a partial dependency for each noise symbol shared by their
affine forms.

However, the literature [FS04, MSV+02] says that AA still has an over-conservatism
problem.
Example 2.2. Let x̂ = 0 + ε1 + ε2, ŷ = 0 + ε1 − ε2. The exact range of x̂× ŷ
is ε1

2 − ε2
2 = [−1, 1], while AA gives [−4, 4]. Besides, AA does not obey the

distributive law. For example, in AA, x̂× (ŷ− ŷ) is zero, however x̂× ŷ− x̂× ŷ
is not zero.

Using AA, one can easily test whether a curve given by f(x, y) = 0 crosses
a rectangle [x, x] × [y, y]. First, we convert the quantities into affine forms:
x̂ = x0 + x1εx, ŷ = y0 + y1εy, then calculate the expression f(x̂, ŷ). If the
computed interval [F , F ] includes 0, then there is possibly a curve branch inside
the rectangle. Of course, due to over-conservatism, Affine Arithmetic may err
but only in one direction: it may report intersection, although there is no one.
But for rectangles small enough this test will succeed, moreover in section 2.3.4
we consider a technique allowing to compute exact bounds using AA in a number
of cases.

2.3.3 Modified affine arithmetic

Now we consider another method to evaluate a function values over an interval.
The method can be seen as an extension of standard Affine Arithmetic. The
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idea was introduced in [SMW+].

Unlike IA and AA, which do not obey the distributive law, MAA satisfies all
the commutative, associative and distributive laws, because it keeps all powers
of noise symbols without approximation. In this respect, there is no difference
between MAA and real arithmetic.

Here we give an overview only for 1D case as the only relevant case in applica-
tion to our problem (for 2D case we refer to [SMW+, MSV+02]).

Taylor expansion of a univariate polynomial of degree d results in the following
equation:

f(x) = f(x0) +
d∑

i=1

f (i)(x0)
i!

(x− x0)i

Now we want to compute f(x) over x = [x;x]. Thus, we take

x0 = (x + x)/2, x1 = (x− x)/2, and x− x0 ∈ x1[−1, 1].

This yields to the following:

f(x) = f(x0) +
d∑

i=1

f (i)(x0)
i!

xi
1[−1, 1]i.

Observe that [−1, 1]2n = [0, 1] and [−1, 1]2n+1 = [−1, 1], so our equation sim-
plifies to:

f(x) = f(x0) +
dd/2e∑
i=1

f (2i−1)(x0)
(2i− 1)!

x2i−1
1 [−1, 1] +

bd/2c∑
i=1

f (2i)(x0)
(2i)!

x2i
1 [0, 1].

Now let denote Di = f (i)(x0)xi
1/i!, then the boundaries [F ;F ] are obtained as

follows:

F = D0 +
d∑

i=1

{
max(0, Di), if i is even

|Di|, otherwise

}
,

F = D0 +
d∑

i=1

{
min(0, Di), if i is even
−|Di|, otherwise

}
.

Remarkably, this formula turns out to be more precise than direct application
of affine arithmetic to f(x). Since we handle all dependencies between quanti-
ties manually. However, the experienced reader may object whether it is worth
using complicated interval methods when AA offers quite satisfiable results in
most cases which is true to a certain extent. On the other hand, the inaccuracy
of AA may require, for instance, more subdivision steps of the algorithm, which
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nullifies the advantages of AA.

Further development of MAA method can be found in [SMW+05]. The pro-
posed method leads to slight performance increase in 2D case which is, however,
negligible in 1D case.

2.3.4 Recursive derivative information

Using the derivative of f(x, y) can provide extra information, which can help to
make the determination of the bounds for f(x, y) on [x, x]× [y, y] more precise.
The idea is that before evaluating f(x, y) over [x, x] × [y, y] using any range
analysis method, we first evaluate ∂f/∂x and ∂f/∂y over [x, x] × [y, y] using
the same range analysis method as used to evaluate f itself. If both resulting
derivative intervals do not straddle 0, then f increases or decreases monotoni-
cally on going across the interval in x and y. Thus, exact bounds of f(x, y) over
[x, x]× [y, y] can be obtained immediately as shown below:

� if ∂f
∂x > 0 and ∂f

∂y > 0, then F = f(x, y), F = f(x, y);

� if ∂f
∂x > 0 and ∂f

∂y < 0, then F = f(x, y), F = f(x, y);

� if ∂f
∂x < 0 and ∂f

∂y > 0, then F = f(x, y), F = f(x, y);

� if ∂f
∂x < 0 and ∂f

∂y < 0, then F = f(x, y), F = f(x, y).

The same approach can also be used recursively — to get the bounds on ∂f/∂x,
one can use its derivatives, i.e., ∂f2/∂x2, ∂f2/∂x∂y and so on. The process
must terminate whenever a derivative is a constant function.

The recursive derivative methods use not only first derivative but all higher
derivative information possible in trying to find the exact bounds of f(x, y) over
[x, x]× [y, y], and therefore they are more accurate.

AA equipped with the recursive derivative information offers the best compro-
mise between accuracy and computation efficiency as reported by [MSV+02].

2.4 Counting the number of curve branches

Separation of curve branches (or curve segments) relies on the fact that one is
able to compute (or estimate) the number of curve branches crossing a line-
segment or passing through a rectangle. This finally leads to the problem of
counting the number of roots of a univariate polynomial over an interval.

As it could seem at first sight, this problem is not trivial and there are quite
complicated and computationally expensive algorithms to solve it. Here we only
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survey existing approaches, referring to [Per06] for the complete description.
All of them are founded on the Descartes’s Law of Signs and its generalization
known as Budan-Fourier theorem. This can be formulated as follows: Let the
number of sign changes, V (a), in a sequence a = a0 . . . ap, of elements in
R\{0} is defined by induction on p by:

V (a0 . . . ap) =
{

V (a1 . . . ap) + 1 if a0a1 < 0
V (a1 . . . ap) otherwise

}
, with V (a0) = 0,

and let P be a univariate polynomial of degree p in R[X], we denote by Der(P )
the list of derivatives P, P ′, . . . , P (p), and by n(P ; (a, b]) the number of roots of
P in (a; b] counted with multiplicities.

Theorem 2.1. (Budan-Fourier theorem) Let P be a univariate polynomial of
degree p in R[X]. Given a and b in R ∪ {−∞,+∞}

� V (Der(P ); a, b) ≥ n(P ; (a, b]),
� V (Der(P ); a, b)− n(P ; (a, b]) is even.

In general it is not possible to conclude much about the number of roots over an
interval using only theorem 2.1, this is only a “building block” for complicated
algorithms. There are several techniques which give the exact number of roots
over an interval via computing:

� signed remainder sequences;
� signed subresultant polynomials;
� signature of a quadratic form.

Although these methods provide the exact number of polynomial roots over an
interval, it is too expensive to use them in a real-time visualization. That is why,
we base our tests on the result obtained from the Mean Value theorem explained
below. These tests at some sense constitute the “core” of our approach. Mainly,
we distinguish two cases: the number of intersections of a curve with a line-
segment and the number of curve branches passing through a rectangular area.

2.4.1 The Mean Value theorem

The Mean Value Theorem is an important theoretical tool in Calculus.

Theorem 2.2. If f(x) is defined and continuous on the interval [a, b] and dif-
ferentiable on (a, b), then there is c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

In particular, we are interested in a special case of the Mean Value that is also
known as Rolle’s theorem.
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Fig 2.2: A boundary-intersection test

Theorem 2.3. (Rolle’s Theorem) If f(x) is defined and continuous on the in-
terval [a, b] and differentiable on (a, b), and f(a) = f(b), then there exists some
c in the interval (a, b) such that f ′(c) = 0

Remarkably, this theorem leads to the following result:

Corollary 2.1. If for a differentiable function f(x) its derivative f ′(x) does
not straddle 0 in the interval [a; b], then f(x) has at most one root in [a; b].

In other words, the presence of the first derivative allows to argue about the
number of roots of a univariate polynomial over an interval or the number of
curve branches crossing a line segment.

2.4.2 Boundary intersection of a curve with a rectangle

We developed two similar techniques to test whether only one curve branch
intersects with a rectangle which reflect different stepping schemes considered
later. The first technique is based on boundary intersection tests.

Assume we have a rectangular area whose boundary is subdivided evenly into
small subsegments (see Figure 2.2). We claim that there is only one curve
branch crossing this rectangular area if a line-segment intersection tests pre-
sented below succeeds for exactly two subsegments on the boundary. Apart
from that we do not take into consideration possible presence of closed curve
components within the area since this would violate our definition of a sweepable
segment, and therefore one must encounter a segment end-point inside this area.

Essentially, it is not always possible to distinguish whether the curve has no
intersections or more than one intersection with a line-segment relying on range
analysis tests only.2 Therefore, for each line-segment comprising a rectangle our

2Indeed, only real root counting techniques like the ones mentioned in the beginning of
ssection 2.4 can give an accurate answer immediately. However, applying them in a real-time
for each rasterized pixel would be rather costly. That is why, we decided in favour of range
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algorithm outputs either “no intersections”, or “one intersection”, or “possibly
more than one intersection”. The overall boundary test succeeds if exactly two
subsegments on the boundary have “one intersection” result, and the remaining
ones have “no intersections” correspondingly. The last case – “possibly more
than one intersection” – indicates that nothing can be said for sure on the cur-
rent scale, and the area of interest must be refined. Meaning of this step will
be clear after presenting the overall approach in chapter 3, now it is important
that this case corresponds to the test failure. Following our needs, we will call
the procedure “estimation of the number of curve branches” further in our dis-
cussion.

Assume we need to estimate the number of intersections of an algebraic curve
C(f) with a line segment (horizontal or vertical) [a; b]. This is analogous to
estimate the number of roots of a polynomial f(x, y0) or f(x0, y) where one
coordinate is fixed over an interval [a; b]. We propose the following approach:

1. calculate the range of values of f(x) over an interval [a; b] using range
analysis. If the resulting interval does not contain zero, f(x) has no root
in [a; b] and we are done;

2. otherwise we need to estimate the number of possible roots of f(x) counted
with multiplicities over this interval. To this end, we evaluate the sings at
interval end-points.

(a) If there is no sign change, the number of roots is even and possibly
more than 0, since range analysis gives a zero interval. At this point
we are unable to distinguish between “no roots” and “more than one
root” cases. In any case, we report “more than one root”, which
corresponds to test failure as mentioned above.

(b) If there is a sign change at end-points, we apply the following recur-
sive procedure:

i. check whether the first derivative f ′(x) straddles 0 on [a; b] using
range analysis. If it does not, we have only one root of f(x) and
our test succeeds (due to the Mean-Value theorem);

ii. otherwise partition the segment in two halves ([a; c] and [c; b]).
Observe that f(x) must have a sign change only at one of them,
say at [a; c]. Select the half where f(x) has no sign change, i.e.,
[c; b] and test it with range analysis. If range analysis returns a
zero interval, again nothing can be said concretely at a moment
because we have potentially more than one root along the inter-
val. Therefore, we report “more than one root” and boundary
intersection test ends with a failure.

iii. otherwise, if a computed interval over [c; b] does not contain zero,
we apply the complete recursive procedure to the other half [a; c].

analysis equipped with subdivision technique.
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Fig 2.3: Extension of the Mean Value theorem to 2D

Observe that if our intersection test succeeds for two subsegments one has two
locations where a curve branch enters and leaves the rectangle indicating that
only one curve branch crossing it.

2.4.3 2D intersection of a curve with a rectangle

This is a 2D counterpart to the procedure in section 2.4.2.3 The intuition be-
hind it is that between two curve branches of C(f) lies a branch of a partial
derivative such that the roots of a univariate polynomial, obtained by fixing one
of the coordinates of f , are separated by the root of its derivative. In our case
we are interested in the first partial derivative w.r.t. y-coordinate as we deal
with x-monotone curve branches.

Let us consider a sweepable area in Figure 2.3 bounded by two vertical lines.
Sweepable area denotes a region in the plane defined by x-coordinates of two
consecutive critical points of a curve, in other words, curve segments crossing
this area are x-monotone and do not have singularities in the interior.4 The fol-
lowing theorem allows to estimate the number of curve branches in the sweepable
area.

Theorem 2.4. Assume R = [xmin;xmax] × [ymin; ymax] is a rectangle in the
sweepable area. Then, there is only one branch of C(f) in R if C(fy) does not
have zeros in this rectangle. The reverse is not true: namely, C(fy) may have
zeros in R but there is only branch of C(f) in R.

Proof. In Figure 2.3 one can see a rectangle R in the sweepable area and two
branches of C(f). If we fix the x-coordinate at some x0 ∈ [xmin;xmax], then,

3We call it “2D intersection test” to distinguish from the boundary intersection test.
4Note that the sweepable area is not necessarily bounded by vertical lines – if a curve is

not closed and has no singular and extreme points, then the sweepable area covers the whole
plane.
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by the Mean Value theorem, between two roots of f(x0, y) there must be a root
of fy(x0, y). We may choose any x-coordinate in the range [xmin;xmax] and,
since the segments are x-monotone, the number of intersections of a vertical
line with a curve will remain constant on going across the interval (always two
intersections with two branches). In other words, there must be a branch of
C(fy) between two x-monotone branches of C(f).

Now one needs two show that if there are two branches of C(f) in the interior
of R, then C(fy) also goes through the rectangle R. If there is a vertical line at
x0 between xmin and xmax which intersects simultaneously with both branches
of C(f) inside the rectangle then by the Mean Value theorem there is a root of
fy(x0, y) in the range [ymin; ymax] and assuming the continuity of C(fy) we are
done. If there is no such a vertical line (see Figure 2.3) we proceed as follows.
We know that the branch of the derivative lies in between the curve branches
and, hence, the derivative must cross the boundary of R earlier than the branch
of C(f) on entering the rectangle. By the same token, on leaving the rectan-
gle the derivative must cross a boundary of R after the branch of C(f). As a
result, we have that C(fy) enters and leaves the rectangle, since it cannot be
discontinuous, it also has zeros inside R.

We developed a procedure to check if only one curve branch of C(f) exists inside
a rectangle [xmin;xmax] × [ymin; ymax]. As before, we are unable to count the
number of branches precisely relying on range analysis, therefore, we distinguish
the following cases: “no curve branches inside a rectangle”, “one curve branch”,
and “possibly more than one curve branch”. The latter case corresponds to the
test failure saying that the number of curve branches cannot be determined on
the current “resolution”, and the rectangular area must be refined, this will be
discussed in chapter 3. Here is the approach:

1. compute f(x, y) over [xmin;xmax]× [ymin; ymax] using the range analysis.
If the resulting interval does not contain zero, the curve does not cross
this rectangle and we are done;

2. otherwise compute ∂f/∂y over [xmin;xmax] × [ymin; ymax] again using
range analysis. If C(fy) does not have zeros inside this rectangle, we
have only one curve branch inside it and report and our test succeeds.

3. if range analysis returns an interval containing zero for fy, we potentially
have more than one curve branch within the rectangle. In this case, 2D
intersection test fails and we report “possibly more than one curve branch
over rectangle”.

It is important that in practice we use only approach from section 2.4.2. There
are several reasons for that: one of them is that one-dimensional range analysis
is much faster. We consider this in detail in the next chapter after presenting
the overall algorithm.
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Chapter 3

Algorithm

This chapter presents the algorithm for visualization of segments and points of
algebraic curves. We begin with a short discussion to have an intuitive feeling
about the algorithm. Then we present the pseudo-code and consider two differ-
ent stepping schemes (4- and 8-way) along with technical details. Afterwards,
we discuss stopping criteria of our algorithm and plotting isolated points. As
possible optimisations we consider a special case of handling coincide branches.
Practise has shown that this simple idea can give at least tenfold performance
boost in complicated cases.

3.1 Overview

We already mentioned in the introduction that our approach has its roots in
curve tracking and space subdivision methods. We start with clear and sim-
ple idea introduced by [Cha88]. His algorithm offers the best performance for
nicely-behaving curves, i.e., when curve does not have singularities.

We generalized his algorithm as follows: for each pixel, consider its neighbour-
hood (see Figure 1.3)(a) and check whether only one curve branch enters and
leaves it.1 This can be done using techniques given in section 2.4. If there is
only one curve branch we choose the next pixel. Otherwise we subdivide the
current one into four subpixels, we consider these subpixels with a certain prior-
ity explained later and select the one intersected with the curve branch. Then,
we again consider a neighbourhood of this subpixel, if there is only one branch
inside the area we make a step forward. Otherwise we partition this subpixel
recursively into four subpixels and repeat all computations. As we know that
a curve segment has no singularities in the interior the recursion must stop at
some subdivision level. Thus, the sequence of subpixel should finally bring us

14- and 8-way stepping schemes consider different pixel neighbourhoods however this is an
object of later discussion, the overall approach has the same structure for both schemes.
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to the next pixel in the approximation.

As the evidence to the correctness of our approach we developed the notion of
witness subpixel.

Definition 3.1. A “witness” pixel is such a pixel which intersects only with
one curve branch we rasterize.
We implicitly assign a witness pixel to each pixel in our approximation. Ap-
parently, the approximation of a curve segment is correct if there is a path of
witness pixels from one end-point to another. Note that a witness pixel does
not necessarily have pixel’s size, it can amount to an integer fraction of a pixel
depending on how close curve branches come to each other at this location.

Our algorithm starts at a seed point, in other words, at a point which definitely
lies on the curve branch. Assume the seed point is chosen in the middle of
the segment such that at the starting point we have two different directions to
follow. We approximate this seed point with a subpixel, small enough such that
its boundaries intersect with the given curve branch only, i.e., with a witness
pixel. We assign this witness pixel to the starting pixel (a pixel with the seed
point in the interior). In most cases they have equal size, meaning that there
are no other curve branches surrounding the seed point.

We start with examining the neighbourhood of the starting pixel (see Fig-
ure 1.3). If there are only two intersections – only two pixels from the neighbour-
hood intersect with the curve – we mark one direction as taken and immediately
obtain the next pixel. We need to state explicitly that term “intersection” can
be understood differently. Various definitions lead to various issues, that is why
we do not focus on a concrete mathematical meaning now. Exact statements
will be given later in this section. Anyway, regardless the concrete interpreta-
tion the overall structure of the algorithm remains unchanged.

Otherwise, if there are more than two intersections, we continue tracking from
the witness pixel – we cannot subdivide the starting pixel itself, since we are
not sure whether only one curve branch passes through it. If the neighbour-
hood test for the witness pixel succeeds we obtain the next subpixel, otherwise
it is subdivided into 4 parts. Among these parts, the one intersecting the curve
branch is selected. Intrinsically, we can choose anyone which intersects a curve
branch, but it is profitable to select the one located closer to the pixel’s bound-
ary in the current pixel’s direction. This observation will be clarified in the next
section, where we consider as an example a part of a curve branch tracked by
the algorithm.

If the neighbourhood test for this selected subpixel again fails we subdivide it
further, recursively. Assume the neighbourhood test succeeds in this case, then
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we can uniquely identify the next subpixel. Let us call it subpixel a. To de-
termine the next pixel in the approximation we test whether a lies in the pixel
different from the one we started tracing from. If it does, we immediately ob-
tain the next pixel. Simultaneously a becomes its witness pixel. Otherwise, we
continue tracking from a until the pixel’s boundary is reached. With this ap-
proach we finally end up with a sequence of witness pixels which approximates
the given curve branch.

Another important issue is how to distinguish incoming and outgoing branches.
Indeed, each time the neighbourhood test succeeds we have two curve branches
and need to select the one corresponding the current tracking direction. Chan-
dler [Cha88] solved this problem as follows: each time the algorithm makes a
step it stores a direction been taken – a number from 0 to 7 in Figure 1.3(a) –
then, the opposite direction (i.e., the direction we came from) is calculated as
(d + 4) mod 8 with d being a taken direction. Such that the branch leaving the
pixel in direction (d +4) mod 8 is treated as an incoming branch and, thus, can
be discarded. Although this works pretty well in the original algorithm – under
assumption that we do not have singularities and closely located branches – in
some cases it can determine wrong “backward” direction. We point out these
cases later along with the modification to overcome this difficulty.
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Fig 3.1: A sequence along which subpixels are checked. Arrow shows the back-
ward direction.

3.2 Algorithm details

3.2.1 Pseudo-code

The algorithm’s pseudo-code requires the following data types and procedures
to be defined:

Pixel = {x, y, sub x, sub y, level} : a pixel defined by integer coordinates (x; y),
subpixel coordinates (sub x, sub y) relative to the pixel’s boundary and
subdivision level (0 for pixels, 1 for 1/4 of pixel, 2 for 1/16 of pixel, etc)

Direction : a number 0 . . . 7 specifying the one out of 8 possible directions in
8-pixel neighbourhood.

function test neighbourhood(p : Pixel, back dir : Direction) : tests 4 or 8 surround-
ing pixels of pixel p (depending on the stepping scheme used), and returns
a new direction in case the neighbourhood test succeeds, otherwise re-
turns -1. The direction d is treated as backward direction, that is the
direction in which the incoming branch leaves the pixel.

function get pixel(subp : Pixel) : returns a pixel to which subpixel subp belongs.
If subdivision level of subp is 0, the pixel itself is returned.

function get subpixel(p : Pixel) : subdivides pixel subp into 4 parts and returns
the one intersected with the curve branch.

function advance pixel(p : Pixel, d : Direction) : advances pixel coordinates (for
pixels) or subpixel coordinates (for subpixels) in direction d, returns a
new pixel.

function subdivide(p : Pixel, d : Direction) : recursively subdivides pixel p into
subpixels until the next subpixel can be uniquely determined, returns a
subpixel for which neighbourhood test succeeded and a new direction.
Notice that this next subpixel is not necessarily a “witness” however in-
tersects with only one curve branch: it becomes “witness” when it lies in
a pixel different from the one we came from.
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The procedure step below gets the current pixel pix, its witness pixel witness
and a direction d and returns the next pixel in the approximation, its witness
pixel and a current tracing direction relative to the previous pixel.

procedure step(pix : Pixel, witness : Pixel, d : Direction)
1. new d : Direction ← test neighbourhood(pix, d)
2. if new d 6= −1 then
3. p : Pixel ← advance pixel(pix, new d)
4. return {pix, pix, d}
5. if witness = pix then // if a witness subpixel is a pixel itself we perform subdivision
6. {p : Pixel, d} ← subdivide(pix, d)
7. else // otherwise we start tracing from the witness subpixel
8. p : Pixel← witness
9. while get pixel(p) = pix // iterate until we get a new pixel
10. new d← test neighbourhood(p, d)
11. if new d = −1 then
12. {p, new d} ← subdivide(p, d)
13. p ← advance pixel(p, new d)

// returns a pixel, its witness subpixel and a new direction
14. return {get pixel(p), p, new d}
end

procedure subdivide(p : Pixel, d : Direction)
1. sub p : Pixel ← get subpixel(p, d)
2. new d← test neighbourhood(sub p, d)
3. if new d = −1 then
4. return subdivide(sub p, d)
5. return {sub p, new d}
end

Remarks. Notice that the procedure test neighbourhood is essentially the most
important one. It takes a pixel and examines its surrounding pixels for the
purpose of intersection with a curve using range analysis. Its realization differs
for 4- and 8-way stepping schemes depending on the way we treat intersections
between a curve and a pixel. We consider both of them.

The procedure get subpixel selects a subpixel from among 4 possible which is
intersected by a curve. The testing of subpixels proceeds along a sequence of
most likely possibilities. In particular, the subpixel located near the pixel’s
boundary in direction opposite to the current direction of motion is checked
first. Then, its two nearest neighbours, and at the end the remaining subpixel,
see Figure 3.1. The number inside a subpixels shows the order of testing, an
arrow defines a backward direction.
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Fig 3.2: Pixel approximation of a curve branch with relative pixel directions
(a); and curve tracing with 4-way stepping scheme, plotted pixels are marked
with x’s (b)

3.2.2 4-way stepping scheme

This scheme means that we do not step in diagonal directions, only horizon-
tal/vertical directions are allowed. Let us consider Figure 3.2(a). From the
central-top pixel one can step to dark-colored pixels only. We mark pixels plot-
ted by using 4-way stepping scheme with +’s, bold-face letters denote relative
pixel directions. Pixels plotted by using both schemes are marked with x’s, and
italic letters denote pixel directions in case of 8-way stepping scheme.

Remark that the stepping schemes differ in how we count pixel-curve intersec-
tions. In particular, in case of 4-way scheme we use the following definition of a
pixel-curve intersection: a curve intersects with a pixel if there is a curve branch
in the interior of this pixel.

At first glance it sounds trivial but in section 3.2.3 we will see the difference
after introducing the definition of intersection for 8-way stepping scheme. Now
we consider the application of 4-way stepping scheme on the example. Let us
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take look at Figure 3.2)(b).2 Assume we came from the bottom-left pixel. From
this pixel the algorithm selects a north pixel as the only one intersecting by the
curve branch. At this pixel the neighbourhood test again succeeds and we step
in the east direction.

While testing the neighbourhood of the next pixel, we find out that two of its
neighbours intersect the curve. Thus, the pixel is subdivided into 4 parts (1, 2,
3 and 4 in the figure). We further consider one of them intersecting the curve
branch (2 in the figure). The subpixels are verified in the order as depicted in
Figure 3.1 depending on the backward direction.

We continue curve-tracking from the subpixel “2” in the figure. The neighbour-
hood test for it fails as we have more than 2 intersections, this leads to another
subdivision step. Finally, in the last subdivision step we find out that only one
subpixel intersects with the curve branch (the one denoted by b in the figure).
This subpixel lies in the area enclosed by another pixel, and, hence, the next
pixel is determined. Simultaneously, b becomes its “witness” pixel.

Next iteration of the algorithm starts from this pixel. Again, several subdivi-
sion steps are required, until the neighbourhood of the subpixel denoted by b
allows to obtain the next subpixel c. Repeating this procedure, we end up with a
subpixel d, which lies in the next pixel. As before, d becomes its “witness” pixel.

Repeating these steps we finally result in a path consisting of “witness” pixels
approximating the curve branch.

3.2.3 8-way stepping scheme

In this case we can step in any of 8 possible directions as depicted in Figure
1.3)(a). Besides that, we exploit another definition of curve-segment intersec-
tion: a curve intersects with a pixel if its “exterior” boundaries are intersected
by the curve.

For instance, in Figure 1.3(a) segments AB and BC are “exterior” boundaries
for pixel NE, segment CD — for pixel N , segments DE and EF — for pixel
NW . In this case a pixel neighbourhood consists of 8 pixel (counting diagonal
directions).

Assume as before we came from the bottom-left pixel – see Figure 3.3. Then,
we select the north-east pixel, as the only one crossed by the curve.

2Curve branches depicted in the figure certainly do not hit our definition of a curve segment
given in section 2.2, but since our algorithm can deal with more general segments we consider
this as an example without loss of generality.
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Fig 3.3: Curve tracing with 8-way stepping scheme, plotted pixels are marked
with x’s

The neighbourhood of this pixel does not allow to determine the next pixel
uniquely, that is why we subdivide it into 4 parts (1, 2, 3 and 4 in the figure).
We select the subpixel marked with “2” and proceed by testing its neighbour-
hood. The subdivision level is again not enough to decide unambiguously which
pixel is the next one. In the next subdivision step we select the subpixel de-
noted by a in the figure and successfully determine the next subpixel. This next
subpixel lies in the interior of another pixel, thus the east pixel is determined.
At the same time, this subpixel is saved as its “witness” pixel.

Next iteration we start from the east pixel. Since there are several curve
branches passing through its neighbourhood, we have to go down to subpixel
level again. But unlike for the previous pixel, now we have a certain “witness”
pixel, therefore we continue by considering its neighbourhood. The subdivision
level is again too small. Thus, we subdivide the “witness” pixel into 4 parts and
choose the one denoted by b in the figure. From there we step to the subpixel
c, since it is only one crossed by the curve branch.

In the next algorithm step we obtain a subpixel d which in its turn belongs to
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the north pixel, therefore the next pixel is successfully determined. d is stored
as its “witness” pixel.

As a result, the reader may observe slightly different behaviour of two schemes
on the same example. In the next section we give technical details in realization
of these two schemes and point out advantages and drawbacks of both.

3.2.4 Plotting isolated points and vertical segments

3As mentioned in the introduction, an important feature of implicit curves,
which makes the visualization of them more complicated, refers to the presence
of isolated points. A simplest equation defining an isolated point as intersection
of two imaginary lines is: x2 + y2 = 0.

Technically, an isolated point is a singular point – since a gradient Of vanishes
in it – and in our case is represented as a degenerate segment whose end-points
coincide.

To draw such a segment we look for an appropriate y-coordinate of the point.
For this purpose, we use a real root isolation algorithm (for details see [EKK+05,
RZ04]) on a given x-interval to obtain a set of ordered y-coordinates. Among
them we select the one corresponding to a certain arc-number. As a result, a
pair sufficiently refined intervals in x and y direction approximates an isolated
point.

Processing vertical segments is a similar to the technique explained above: in-
deed, a vertical segment is uniquely determined by its end-points. Therefore,
we compute isolating rectangles for segment’s end-points and connect them by
a straight line.

3.2.5 Choosing the “seed” point and stopping criteria

All curve-tracking algorithms require a starting (seed) point which lies on the
curve. There are a lot of methods how to find such a point: some algorithms use
subdivision, another apply heuristics such as Monte-Carlo method, or require
user interaction and so on. In our case a starting point has to be determined
precisely since our goal is to visualize a distinct curve segment.

Remember that a curve segment is defined by two end-points and an arc number
which is constant in the interior of the segment. X-coordinates of the end-points
are specified by isolating intervals whereas y-coordinates are given implicitly by

3Note that the information on various kinds of degeneracies of curve segments is supposed
to be provided as an input to the algorithm, referring to the current implementation this topic
is highlighted in section 4.1.2
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Fig 3.4: Stopping criterion (a); and the advanced version (b)

arc numbers.

We suggest the following method to compute a seed point: pick up some x-
coordinate x within the range between two segment end-points, isolate roots
of a univariate polynomial at this x-coordinate, order the set of computed y-
intervals in increasing order, and select the one interval which corresponds to the
segment’s arc number. Afterwards, a pixel with x-coordinate x and y-coordinate
lying on the boundary of y-isolating interval is refined (subdivided) to be inter-
sected only with one curve branch we rasterize.

As a result we have an isolating rectangle (subpixel) which is guaranteed to in-
tersect with exactly one curve branch and contains a desired seed point. Then,
we check the neighbourhood of a pixel containing this seed point. If the test
returns two distinct directions, the starting “witness” pixel is found, otherwise
we perform the neighbourhood test recursively on the subpixel level. From the
“witness” pixel one can move to any out of two distinct directions, storing the
remaining one beforehand.

Another important question concerns stopping criteria. At first glance stop-
ping criteria look rather simple: tracing terminates once a pixel containing an
end-point is met in the neighbourhood of the current pixel. Pixels containing
the end-points are again computed by means of real root isolation (for details
see [EKK+05, RZ04]). Recall, that x-coordinates of the end-points and the
segment’s arc number are enough to compute isolating rectangles enclosing the
end-points.

However, this is not the solution for all cases. In Figure 3.4(a) one can see the
situation where one of the neighbouring pixels of the current pixel (dark-colored)
contains a singular point. In such a case our stopping criteria will alarm and
the further tracing in that direction will stop, nevertheless the curve contains
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a high-curvature undulation near the end-point which is not rasterized. We
developed the ideas allowing to recognise a number of such situations. Since
the curve segments we render are x-monotone, we are guaranteed to be away
from high-curvature regions if the algorithm has reached a pixel (or subpixel)
enclosed in a rectangle containing the end-point whose bottom/top boundaries
do not have intersections with the curve – in Figure 3.4(b) this rectangle is
dark-colored. To find such a rectangle, we start by testing the horizontal sides
of the end-point pixel with range analysis. If at least one test succeeds, the pixel
is divided in two parts and the part containing the end-point is tested again.
Recursion stops when the rectangle is small enough such that range analysis
tests fail for both of its horizontal sides.

This approach seems to be good enough to handle a number of problematic
cases, but if a curve has almost vertical slope near the end-point, horizontal
sides of such an “isolating” rectangle would be miserably small and the algo-
rithm, therefore, would have to perform a great number of subdivision steps to
reach a subpixel lying inside this rectangle. That is why, as a practical solu-
tion we suggest to restrict the number of rectangle subdivisions by the maximal
subdivision level dependent on the precision of arithmetic currently used (for
detailed information on the maximal subdivision level refer to section 4.2.2).

From the conservative point of view, we sacrifice completeness of our algorithm
in that way. However, when the visualization of high-curvature “peaks” consti-
tutes a problem at certain fixed resolution, scaling the region of interest exposes
previously hidden details – in any case the knowledge of exact curve topology
guarantees that curve undulations whose sizes are comparable with the pixel size
cannot be overlooked. From this position the problem looks somewhat strained:
indeed, the curve peaks of one pixel width does not carry too much information
about a curve segment.

3.3 Realization features

The two considered schemes substantially differ in realization of the procedure
test neighbourhood. With the help of mathematical tools described in section 2,
we can now formulate the sequence steps required by this procedure.

3.3.1 4-way stepping scheme

In this case all tests to refine pixels rely on the technique explained in sec-
tion 2.4.3. Let us again consider Figure 3.2(a). Our 4-pixel neighbourhood
comprises only dark-colored pixels in the figure. Assume we are in the central
pixel marked with direction E. Steps of the procedure test neighbourhood:

1. check all 4 neighbouring pixels for intersecting with a curve using range
analysis. If more than two of them intersect with a curve, we require sub-
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Fig 3.5: Behaviour of schemes nearby a high-curvature point, x’s – pixels plotted
by both schemes, +’s – by 4-way stepping scheme only

division. Indeed, there should at most 2 intersections – one for incoming
branch and one for outgoing branch – otherwise the next pixel cannot be
determined uniquely. Assume we have found two pixels – the northern
and the southern one in the figure. We proceed as follows:

2. drop the pixel corresponding to backward direction.4 As a result we are
left with the upper-center pixel (in Figure 3.2)(a). Here a difficulty shows
up: let us consider Figure 3.5. Assume we are in the upper-center pixel
containing a high-curvature point and are considering its neighbourhood.
Thus, by simply dropping the pixel we came from one may find oneself
in a situation where no next pixel is determined. That is why, we need
to keep track of all such suspicious situations and perform subdivision to
remove all doubts.

3. obtain the number of curve branches crossing the remaining pixel. We
use the technique from section 2.4.3 to ensure that only one curve branch
passes through the pixel. In case of ambiguity subdivide the pixel into 4
parts and test each of them separately.

The way how this scheme works can be understood via the notion of tunnelling.
If one conceives of variable-width tunnels – consisting of “witness” pixels –
surrounding each curve branch, which are sufficiently narrow, such that the
tunnels of two closely passing branches do not intersect. Such “tunnels” separate
curve branches from one another and, therefore, allow to render them separately.
The approach given above is robust in the sense that all pixels intersected with a
curve branch are plotted, but in some cases this conservatism leads to redundant

4Recall that backward direction is defined by (d + 4) mod 8 where d is the current di-
rection of motion. We number directions as: east(0), north(2), west(4) and south(6), see
Figure 1.3(a). Although in 4-way stepping scheme we use only 4 directions, we left the num-
bering unchanged, in order to elude the confusion.
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Fig 3.6: Wrong backward direction (a); and fragments of the neighbourhood
frontier checked by range analysis depending on the backward direction (b)

subdivision steps and plotting some pixels more than once.

3.3.2 8-way stepping scheme

The ability to step in diagonal directions imposes additional difficulties. In par-
ticular, in some cases backward direction may be determined incorrectly causing
the algorithm to suspend or even to crush.

For instance, let us examine the situation depicted in Figure 3.6(a). Suppose we
came from the pixel denoted by a. The next pixel found by the algorithm is b,
and, then, pixel c. At the pixel c we determine backward direction by formula
(d + 4) mod 8 where d = 2 (north) as we came from the pixel b. The formula
gives us direction 6 (south) pointing to the pixel b. Whereas the right backward
direction is 7 (south-east), as curve intersects the frontier of pixel d!! There-
fore no curve branch can be discarded leaving us in a situation where more than
one pixel intersects with the curve. This will cause redundant subdivision steps.

To overcome this difficulty we admit that a curve branch may pass not neces-
sarily through the pixel pointed to by the backward direction but also through
its neighbouring pixels. That is why, for every backward direction we factor out
certain parts of the frontier as shown in Figure 3.6(b), and only the remaining
parts are tested by range analysis.

Now we can formulate steps of the procedure test neighbourhood for 8-way step-
ping scheme. Assume we are also in the central pixel with NE direction in
Figure 3.2(a). As we came from the south-west the backward direction is 5
(south-west). Steps of the procedure test neighbourhood:

1. discard a certain part of the frontier depending on the current backward
direction and test the remaining one by means of range analysis – in our
example we check only line segments DB, BK, and KJ . If more than one
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intersection found, we possibly have more than one curve branch in the
neighbourhood and have to proceed with subdivision. Indeed, there must
be only one intersection – as we already discarded the incoming branch –
otherwise the next pixel couldn’t be determined and we need to subdivide.
In Figure 3.2(a) only the segment DB intersects with the curve.

2. split up the obtained segment into smaller subsegments corresponding to
pixel directions, and check them separately (subsegments DC and CB in
our case). By the same argument, there must be only one subsegment
crossed by the curve. In our case this is a segment CB. Now we need to
ensure that indeed only one curve branch intersects the selected segment.

3. to compute the number of curve branches crossing the segment we use
a technique based on first-derivative tests from section 2.4.2. If the test
succeeds we return a new direction, otherwise we proceed by subdivision.

The algorithm given above requires some remarks.

Intrinsically, a pixel direction can be conceived of as though we save a previous
pixel each time we perform the algorithm step, but this previous pixel is given
in “local” coordinates relative to its neighbouring pixels. Essentially, direction
is the only way to exploit the continuity of curve branches.

Looking at Figure 3.6(b) one may think that by cutting off the frontier the
algorithm can overlook some curve branches and, thus, be misled. For instance,
when a curve enters and leaves pixel’s neighbourhood within one segment. How-
ever, this cannot happen since having two close curve branches would cause
subdivisions earlier during tracing of previous pixel(s). Indeed, if a curve has
an x- or y-extreme point (we consider general segments here) nearby the current
pixel such that directions of incoming and outgoing branches differ rather little,
because of continuity of the curve more than one branch must be detected in
the previous neighbourhood tests, and therefore we approach this current pixel
at subpixel scale.

3.3.3 Comparison of schemes

In this section we will try to summarize all advantages and drawbacks of both
schemes.

First of all, with 4-way stepping scheme we trace a curve a bit slower, because
steps in diagonal directions are forbidden. On the other hand, we use 2D range
analysis with this scheme, which gives some advantages. Namely, in Figure 3.5
with 4-way stepping scheme all pixels crossed by the curve are plotted, whereas
8-way stepping scheme misses some pixels. This is because we use 1D range
analysis (since 2D range analysis do not allow to step in diagonal directions)
and test only the boundaries with 8-way scheme.
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Fig 3.7: Tracing of a “flattened” parabola

1D range analysis is much faster than 2D which together with faster curve trac-
ing gives 8-way scheme an advantage over 4-way scheme. Moreover, the size of
an area which can be left out by 8-way scheme is at most 2×2 pixels. Therefore,
in a picture taken with resolution 800×600 the absence of such tiny structures is
almost unnoticeable. However, this is a theoretical observation: the tests have
shown that nearby high-curvature points range analysis tends to over-estimate
results quite considerably and such regions are subdivided with high probability.

As an example see Figure 3.7 where several steps of 8-way adaptive subdivision
while rendering a “flattened” parabola are reconstructed from the log file. In
the figure dots define registered intersection resulting in successful steps whereas
crosses mean “redundant” or incorrect intersections which lead to subdivisions.
One can observe that due to smaller steps all pixels intersecting with the curve
are rasterized.

That is why, we would suggest using 8-way stepping scheme as it is more flexible
and requires only 1D range analysis, which is fast and quite easy to implement.

3.3.4 Round-off arithmetic errors and possible threats

Unlike the ideal case, real computations often use approximated quantities which
result in round-off errors. For exact algorithms this is a formidable problem,
since inexactness of computations may lead to algorithm’s hang-up or faulty
exit. Situations where round-off errors may have a serious impact on the al-
gorithm’s execution are often referred to as “degenerate” cases. In this section
we outline such situations and possible ways to avoid them. We do not draw a
special attention to a certain stepping scheme. The rules given in this section
are common for both schemes.
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Fig 3.8: A situation where the next pixel may be determined incorrectly due to
round-off errors

Remark that, for inexact arithmetic we represent polynomial coefficients by
intervals, this ensures that our approximation always encompasses the “true”
result. Evaluation of such a polynomial at a point is also an interval.

Let us consider Figure 3.8. Here the curve branch passes very close to pixel’s
boundary, so it might happen that because of round-off errors an incorrect pixel
will be chosen. For example, if one uses double-precision arithmetic and eval-
uation of a polynomial at pixel’s boundary near the curve branch returns an
interval containing zero, the sign of such an evaluation we cannot trust. Indeed,
an interval including zero is the result of round-off errors, 10−17 is a limit for
double-precision and when the computed quantity is comparable with this limit
further computations with it are unreliable. To prevent this, we keep track of all
polynomial evaluations, and, whenever the precision limit is exceeded, trigger
the flag indicating possible imprecise result. In this case, the same quantity is
evaluated once again using modular arithmetic to test for exact zero. Again,
if the quantity is not evaluated to zero, it is recomputed with exact rational
arithmetic.

Another challenge occurs when the curve branch goes directly through a pixel’s
boundary. Exact arithmetic returns zero in this case and we need to decide
which pixel to choose. In fact, we are free to select anyone out of two, but in
order to exclude ambiguous situations we stick to the following rule: “for hori-
zontal segments select the left one, for vertical – the lower one”. This method has
its roots in symbolic perturbation technique, for details please refer to [MN00].

Although the cases considered here are the most important ones, we are still
not free from round-off errors. It can happen that double-precision arithmetic
is not sufficient to visualize a curve branch, therefore we suggest to use a three-
level scheme with gradually increasing arithmetic precision. At the first level
we use double arithmetic and store polynomial coefficients as double intervals,
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Fig 3.9: Rendering of “coincide” branches, horizontal (a) and vertical (b) cases

at the second level we use multi-precision arithmetic for all computations and
store polynomial coefficients as single multi-precision floating-points. At the top
level – only exact rational computations are involved.

3.4 Optimization

Practical experiments have shown that the largest amount of time – more than
90% – the algorithm spends in tracing closely located curve branches. When
subdivision level reaches 125 or more, the computational effort becomes large to
an extent that it nullifies other advantages of the algorithm and implementation,
such as 1D range analysis with recursive derivative information, adaptive pixel
size or caching of precomputed data. It can be understood, since at level 12 one
has to trace at most 212 = 4096 subpixels to reach the pixel’s boundary, i.e.,
to find the next pixel. As a result, the whole matter boils down to the fact that
we spend more than 90% of time in plotting less than 10% of all rasterized pixels.

Fortunately, in most cases this difficulty can be avoided. We present a technique
to suppress high subdivision levels, which in complicated cases gives a significant
performance boost and, simultaneously, allows us to render most of algebraic
curves using only double arithmetic.

3.4.1 Dealing with visibly coincide branches

Let us look at Figure 3.9(a). There is a part of a curve where three curve
branches come very close to each other, such that all of them share the same

5A subdivision level defines how many times a pixel was subdivided. For instance, level = 0
defines an entire pixel, level = 1 – 1/4 of pixel, level = n means that a pixel consists of 4n

parts.
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Fig 3.10: Towards computing direction of motion

pixels within a small region (or strip). We call such branches coincide branches,
because they visibly coincide in the resulting approximation.6

Assume we want to draw a middle segment. Our approach will start at a seed
point and before entering the strip will make the subdivision level large enough
to build up a small subpixel “tunnel” around the middle branch, whose bound-
aries are not crossed by the curve. The “tunnel” will lead us in the correct
direction not allowing to step aside. However, it’s clear that subpixeling does
not improve the picture within this strip any further, since the pixels comprising
it are shared by all three branches at the same time. Moreover, if we want to
draw the remaining two segments, we will have to repeat all expensive compu-
tations, whereas plotted pixels are the same.

That is why, we suggest to not discriminate branches any further once a tracing
direction can be determined uniquely. Indeed, in Figure 3.9(a) one can see that
the direction of motion can be computed, despite the fact that there are more
than one branch in the neighbourhood for all pixels comprising the strip. As
soon as we detected such a situation we switch on the flag indicating the tracing
of “coincide” branches. Later, at location where these branches grow apart or
another branch comes closer, in other words, in all such situations where the
next pixel cannot be determined uniquely, we have nothing to do but computing
a new “seed” point. Really, allowing branches to coincide we, thereby, lose the
information about the true arrangement of curve branches, i.e., plotted pixels
are not “witness” pixels anymore. That is why, a real root isolation is the only
way to “catch” the required branch on leaving the strip.

Although this technique looks nice and easy to implement, account must be
taken of different directions along which branches coincide. Let us consider
Figure 3.9(b). Here branches coincide in a vertical direction, this imposes addi-

6to remove any confusions: we use term “coincide branches” to accentuate the fact that at
some locations several curve branches may occupy the same pixels in a resulting approxima-
tion, however, we do not mean that several branches really have common zero sets.
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tional difficulties in determining a new seed point by exiting a strip of coincide
branches. Point is that we have to know toward which end-point we are cur-
rently moving in order to obtain an x-coordinate of the new seed point. The
end-point we approach can only be determined after we stepped in left or right
direction7, since a curve segment is x-monotone. However, if we move in a ver-
tical direction all the time, it is absolutely unclear which end-point we approach
because a curve segment may be not y-monotone. In the next section we discuss
how the direction of motion can be computed.

Observe that, if a curve branch is almost vertical on coming out the strip of
coincide branches one may result in a gap between the last pixel of the strip and
a pixel containing the new seed point. But, as a curve segment is x-monotone we
can close the gap by drawing a line segment between these points. To exploit this
idea for general non x-monotone segments one needs to find additional intricate
criteria to continue tracing after leaving “coincide branches mode” what is a
tough task.

3.4.2 Computing direction of motion

In most cases direction of motion can be determined immediately at the starting
pixel: indeed, “left” directions point to “lower” end-point whereas “right” direc-
tions lead to “upper” end-point. However, if two vertical directions encountered
at the starting pixel, determine direction of motion turns out to be non-trivial.
In this case we suggest a method based on computations of a tangent vector.

Assume there is a point p on the curve and the neighbourhood test for a pixel
containing the point reports two vertical directions (see Figure 3.10). If a curve
segment is x-monotone, the tangent vector at p must be directed slightly to the
left or to the right depending on the curve slope. In particular, we evaluate
∂f/∂x and ∂f/∂y at the starting point p, the corresponding tangent vector is
as follows:

t = (tx, ty) = (−∂f/∂y, ∂f/∂x).

If ty < 0 the vector is reversed, that way one ensures that t always “looks”
upwards. Then, we use the following rule: if tx > 0, upward direction leads to
the right end-point and downward direction – to the left end-point. Otherwise,
upward direction leads to the left end-point and downward direction – to the
right end-point. Note that the case tx = 0 corresponds to the vertical segment
and, therefore, cannot happen.8
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Fig 3.11: Cases where coincide branches technique does not work properly

3.4.3 Caveats

Note that we need to warn against possible cases where this technique does not
work and can even slow down the performance. In Figure 3.11 to the left one
can see the case where two curve branches go in a diagonal direction close to
each other. Since a pixel grid is fixed, we encounter the case when two branches
are treated as coincide at one pixel and not coincide in the next pixel, and so on.
Namely, in light-colored pixels branches coincide, whereas in dark-colored – do
not. Such an alternate behaviour will cause a real root isolation at every second
pixel which is equivalent to rendering a curve segment pixel-by-pixel using a
straightforward approach given in Introduction.

Another problematic case is shown in the figure to the right. Here again because
of rigidness of a pixel grid two curve branches can lie on different sides of pixel’s
boundary. That is, in spite of close location of the curve branches we cannot
apply our technique, and, therefore, need to subdivide.

Although these problems are in general unavoidable, we can reduce their proba-
bility by forbidding tracing of coincide branches until a certain subdivision level
is reached. In other words, we trace a curve branch with normal subdivision
method while a subdivision level is sufficiently small, in that way decreasing
the probability of the above situations. Our tests have shown that switching to
tracing coincide branches at subdivision level 5 offers rather stable performance
not leading to “blow-up” of the number of auxiliary seed points.

3.5 Correctness proof

In this section we try to summarize the features of our algorithm to make the
reader convinced that our algorithm indeed works.

7according to our numbering the set of “left” directions consists of directions 3 (north-
west), 4 (west) and 5 (south-west); whereas “right” directions are: 1 (north-east), 0 (east)
and 7 (south-east).

8Rasterization of vertical segments is discussed in section 3.2.4.
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Fig 3.12: Towards showing the correctness of the algorithm

We start with a notion of “witness” pixel. Recall that such a pixel intersects
only with a curve branch we want to rasterize. This is achieved by testing the
boundaries of its 8-pixel neighbourhood (we consider this proof only in appli-
cation to 8-way stepping scheme) by range analysis. We use the consequence
of the Mean-Value theorem from section 2.4.1 to ensure that indeed only one
curve branch passes through a “witness” pixel.

Our goal is to build up a sequence of such “witness” pixels connecting two
end-points of a segment. Note that the “continuity” of our sequence is stated
by definition: in case of 8-way stepping scheme adjacent pixels share either a
common side or a common vertex.

Now we will show that a sequence of “witness” pixels can be computed in a
number of steps limited by a global parameter dependent on the curve topology
only. In other words, we mean that the number of subdivision steps required
to determine the next pixel is always limited. To show this we take C = V (f)
(vanishing locus of f) excluding parts covered by open boxes B1 and B2 around
segment end-points, since at non-singular end-points the derivative fy intersects
with a function (see Figure 3.12):

C ′ = C \B1 ∪B2,

therefore ∃ δ−neighbourhood U(C ′) of C ′ with respect to ‖·‖∞, such that :

V (fy) ∩ U(C ′) = ∅, the set U(C ′) is compact, hence :

∃ ε > 0 : inf
U(C′)

|fy| = ε.

Now let us consider a box Bδ′

p with a centre p ∈ C ′ where δ′ < δ, Figure 3.12.
Note that,

Bδ′

p ⊂ U(C ′), and therefore min
Bδ′

p

|fy| ≥ ε.
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Our goal is to estimate a range of fy computed by range analysis over Bδ′

p .9

There exists a fixed M , such that for a small enough δ′ the computed range is
as follows:

[fy(p)−M · δ′; fy(p) + M · δ′],
where M is determined by the polynomial f and defining area of f : for example,
let us estimate a range of values of a univariate polynomial g over a small interval
x = [x;x]. We define g =

∑n
i=0 aix

i, and x1 = x− x, then:

g(x) = a0 + x[anxn−1 + · · ·+ a1] ⊆ a0 + x ·
n∑

i=1

|ai|, if x is small enough.

This implies that:

g(x) ⊆ [a0 − x1 ·M ; a0 + x1 ·M ], where M =
n∑

i=1

|ai|.

Now let go back to the proof: assume δ′ is small enough such that M · δ′ < ε,
therefore computed range of fy over Bδ′

p does not include 0. We claim that the
subpixel size cannot become smaller than Bδ′

p . Really, the neighbourhood test
must succeed at this subdivision level because range analysis will return a non-
zero interval for fy, since our choice of δ′ takes into account the maximal possible
overestimation of range analysis methods. Therefore, on subpixel grid of size δ′

only “true” intersections are registered, that is we can step to the next subpixel.

Another important issue concerns termination of the algorithm. Assume we
rasterize the curve branch on a grid of size δ′. With the above argument we
have shown that this is the smallest possible grid size. We need to show that
the steps in backward direction never take place which otherwise could possi-
bly lead to algorithm’s hang-up. This is ensured by an appropriate selection of
boundaries to be checked during the neighbourhood test. In Figure 3.6(b) one
can see that boundaries corresponding to backward directions are never tested.
Moreover, for an x-monotone segment (unless segment is vertical10) we can al-
ways determine the current tracing direction – towards left or right end-point.
Therefore, in case of tracing toward the left end-point we prohibit to follow any
“right” directions such as SE(7), E(0) and NE(1); respectively while tracing
toward the right end-point we prohibit taking any “left” directions – NW (3),
W (4) and SW (5).

Now we consider intersection points of a curve segment with a grid of size δ′.
Remark that we take only those points which result from intersection of a neigh-
bourhood frontier of a subpixel on the grid with the curve segment in a direction

9We assume exact range analysis over Q throughout the proof in order to stay away from
arithmetic precision errors. As mentioned in section 3.3.4, depending on the current subdivi-
sion level, first we switch to multi-precision, and then to rational arithmetic.

10Visualization of vertical segments is discussed in section 3.2.4.
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Fig 3.13: Intersection “leaving” points

of motion along the segment, in other words we consider only “leaving” points,
see Figure 3.13. The number of such intersection points with one grid-line is
finite11 and limited by the degree of f . Now observe that the number of grid-
lines is also finite as we cannot go further than a certain subdivision level, and
the intersection points form a strictly monotone sequence with respect to x-
coordinate (since curve segments are x-monotone), therefore we must reach a
segment end-point in a finite number of steps.

To complete our proof one should also pay attention to various “degenerate”
situations where inexactness of arithmetic may lead to the wrong decision, we
refer to section 3.3.4 where this problem is discussed in detail.

11With the exception, when a horizontal or vertical curve segment coincides with a grid
line, however in this case reachability of a segment end-point is beyond question.
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Chapter 4

Implementation

4.1 Overview of the Exacus

The Exacus project is being developed in the Max-Planck-Institute für In-
formatik in Saarbrücken, it is part of the European Union’s Effective Compu-
tational Geometry project and ACS project.1 Exacus2 is a set of software
libraries for Efficient and Exact Algorithms for Curves and Surfaces. The li-
braries are designed according to the generic programming paradigm with C++
templates, as it is widely known from the Standard Template Library, Stl. Ex-
acus inherited some ideas originated in Cgal.3 Currently the work is underway
to port all Exacus libraries to Cgal.

Exacus uses several external libraries: Boost (interval arithmetic), Gmp and
Core (number types), Ntl (modular gcd computation), Leda (number types,
graphs, other data structures, and graphical user interface), Cgal (number
types and arrangements) and Qt (graphical user interface). At the current state
of development Exacus consists of the following libraries:

� Library Support (LiS) is a foundation layer, it offers basic services such
as configuration, assertion, file IO (LiS/file io.h), memory manage-
ment, handle template (LiS/Handle.h), generic algorithms, and other
low level support for software libraries.

� NumeriX (NiX) comprises number types, algebraic constructions to build
types from types, such as polynomials (over a number type), vectors, and
matrices, computing determinants, gcds, resultants and subresultants, iso-
lating real roots of polynomials, provides a support for real algebraic num-
bers, and more. As this library offers basic functionality for management

1http://acs.cs.rug.nl
2www.mpi-inf.mpg.de/projects/EXACUS
3www.cgal.org
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of number types we consider relevant parts of it later in detail.

� ConiX (CnX) operates on conics in the plane, predicates on conics and
their intersections, and computes the arrangement of conics in the plane.

� CubiX (CbX) contains predicates on and arrangements of planar curves
defined implicitly by bivariate polynomials of degree up to 3.

� QuadriX (QdX) collects the representation of quadrics in space, predi-
cates on quadrics, their intersection curves and points, the representation
of projected curves, and the arrangement of quadrics in space.

� AlciX (AcX) computes geometric properties of real algebraic plane curves
of arbitrary degree. These properties contain the topology of the curve as
well as the location of singular points and vertical asymptotes. This library
is of particular interest for us because it provides our algorithm with the
exact input consisting of a set of sweepable segments (see section 2.2).

� SweepX (SoX) implements a generic sweep-line algorithm to compute
the planar arrangement of segments of algebraic curves and generalized
boolean operations on regions bounded by curved arcs. Users of SweepX
can either provide their own point and segment classes, or, which is more
convenient, use SweepX’s own Generic Algebraic Points and Segments
(Gaps) based on user-supplied classes for the analysis of curves and curve
pairs (as it done ConiX, CubiX, QuadriX and AlciX). SweepX also
provides an interface for CGAL::Arrangement 2.

As the Exacus libraries are built on class templates, the source code is mainly
concentrated in header files. From the Exacus root directory EXACUS one can
find the source code of a certain library by following the path: EXACUS/library-
name/include/library-abbrev/. For example: EXACUS/NumeriX/include/NiX/.
The library concepts are defined in EXACUS/library-name/manual/concepts/.

Detailed instructions on how to configure and install Exacus can be found in
EXACUS/developers manual/manual.ps. There also listed naming and coding
conventions for the Exacus libraries. In particular, if a header file contains a
single class or data structure then its name is used as a file name. All classes and
files contain a reference documentation in Doxygen format. The reader with
theoretical background can access implementation details of Exacus algorithms
by starting from EXACUS/doc.html.
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4.1.1 NumeriX

Now we will outline important parts of the NumeriX library.

Each number type supported by NumeriX belongs to the one of a rich layer
of number type concepts4, which are refinements of one another (for details
see [BEH+05]). A concept defines which arithmetic operations supports a num-
ber type, whether it is ordered, bounded or exact, which type conversions are
allowed.

The properties of number types are collected in appropriate traits classes. Each
number type NT knows the (most refined) concept it belongs to; it is encoded in
NT traits<NT>::Algebra type. The usual arithmetic and comparison opera-
tors are realized through C++ operator overloading.

Polynomials are provided by class Polynomial< NT > with coefficients over a
number type NT which should be the model of a certain concept. Algebraic
operations on polynomials include: gcds, resultant computation, factorization
by multiplicities. Multivariate polynomials are defined recursively by nesting
templates, i.e.,
Polynomial< Polynomial< NT > >. For example, a bivariate polynomial f(x, y)
is represented as univariate polynomial in y over univariate polynomials in x over
some integral domain.

Such a representation makes difficulties when operations w.r.t. the inner variable
are required. To overcome these difficulties the files NiX/bivariate polyno-
mial hacks.h and NiX/trivariate polynomial hacks.h provide special op-
erations for corresponding polynomials without additional runtime overhead.
These operations include, for example, swapping inner and outer variables in
polynomial equation (transpose bivariate polynomial), substitution of the
inner variable x with a number (substitute x), differentiation w.r.t. the inner
variable (diff x).

Real Algebraic numbers are realized in Algebraic real class. The class rep-
resents a real root of a square-free polynomial. The representation consists of
the defining polynomial and an isolating interval, which is an open interval con-
taining exactly one root of the polynomial. The polynomial is guaranteed to be
non-zero at end-points of the interval. If the root has exact rational value, then
the interval is collapsed to a single rational value. The representation is auto-
matically simplified to a rational number or to a one root number if a degree of
defining polynomial is 1 or 2 respectively.

4A concept is a set of syntactical and semantic requirements on a template parameter, and
a type is called a model of a concept if it fulfils these requirements and can thus be used as an
argument for the template parameter
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Isolating intervals for all real roots of a polynomial are computed by various ap-
proaches including the Descartes Method [RZ04]. All real roots are cross-linked,
meaning that if one number was used to factorize the defining polynomial, all
linked numbers benefit from this simplification.

Interval refinement plays an outstanding role in algorithms which compute iso-
lating intervals. The refinement step is available via the following interface:
refine() bisects the isolating interval; strong refine(m) refines the isolating
interval until m is outside the closed interval; refine to(lo, hi) intersects the
current interval with the isolating interval (lo;hi).

ArithmeticTraits concept declares a well-formed collection of the main num-
ber types (such as integer, rational and real types) and polynomial types over
them. Currently Exacus provides LEDA arithmetic traits and CORE arith-
metic traits constructed out of number types taken from Leda and Core
libraries respectively.

4.1.2 SweepX and Gaps

SweepX implements a sweep-line algorithm for line segments, which handles all
types of degeneracies in a simple unified event type. The sweep-line approach
offers an algorithm to reorder curve segments continuing through a common
intersection point in linear time.

A geometric traits class for curve segments provides an interface between the
generic sweep-line algorithm and the actual geometric operations. The geomet-
ric traits class needs a type Point 2, representing end-points and intersection
points, and a type Segment 2 representing curve segments. The interface re-
quirements imposed by the point and segment templates are collected in con-
cepts AlgebraicCurve 2 and AlgebraicCurvePair 2.

Classes Algebraic curve segment 2 and Algebraic curve point 2 define a
generic (degree-independent) representation of segments and points on algebraic
curves and operations on them, which are suitable for all algorithms in SweepX.
These classes are implemented as part of Gaps, they contain all predicates and
constructors needed for generic sweep-line algorithm SoX::sweep curves() and
to use CGAL::Arrangement 2 with every instantiated version of Gaps. They are
based on the analysis of a pair of curves as implemented by models of Algebraic-
CurvePair 2.

As mentioned before, segment and point class templates are implemented mod-
ule Gaps. The implementation can handle segments and points of arbitrary
algebraic curves. The application libraries have only to provide a curve anal-
ysis and a curve pair analysis depending on the actual curve type. Note that
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points on algebraic curves are defined by isolating intervals in x-range while
y-coordinates are specified implicitly by the arc numbers, see definition of a
sweepable segment in section 2.2.

Below we list the most relevant properties and methods of classes Algeb-
raic curve segment 2 and Algebraic curve point 2 used in this work.

Segment 2:

� source() and target() return a source and a target point of a curve
segment respectively (both of type Algebraic curve point 2).

� support() returns the supporting algebraic curve of a segment.
� arcno() returns the arc number in the interior of a segment.
� is degenerate() indicates whether a segment is degenerate (i.e.,

source = target).
� is reversed() indicates whether a segment is reversed, i.e.,

source > target in lexicographical order.
� is vertical() indicates whether a segment is vertical.
� is bounded() indicates whether at least one of the segment’s end-

points lies at infinity. Not that infinity is not infinity in the sense
of projective geometry, but in an “infimaximal” meaning: an infinite
x-coordinate is smaller/larger than all finite event points.

� rational in x range() returns a rational number within the x-range
of a segment, this number can be used as the “seed” point for our
algorithm.

Point 2:

� x() returns an x-coordinate of a point.
� curve() returns a supporting curve of a point.
� arcno() returns the arc number of a curve segment at this point.
� is infinity tag set() indicates whether a point is an “end-point”

of a vertical line at plus or minus infinity. This is useful when, for
example, a point is the end-point of a vertical unbounded segment.

� infiniteness in x() returns a three-valued result, indicating whether
the x-coordinate of a point is finite, lies at −∞ or at +∞.

� infiniteness in y() returns a three-valued result, indicating whether
the y-coordinate of a point is finite, lies at −∞ or at +∞. The last
two options are valid when a segment has asymptotic behaviour.

It is only left to say some words about unbounded curves and segments, since
the curve renderer must be able to distinguish between ordinary and unbounded
segments. To include unbounded segments and curves into a uniform represen-
tation of sweepable segments, there are symbolic “end-points” defined in Gaps.
For instance, a hyperbola xy − 1 = 0 is represented as a pair of segments: one
from (x = −∞; arcno = 0) to (y = −∞); and the other one from (y = +∞) to
(x = +∞; arcno = 0).
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This is done in the following way: first minus- and plus-infinity are symbolically
added to the range of x-coordinate values. Then, the x-coordinates for “asymp-
totic” and unbounded end-points are perturbed. Namely, the x-coordinate of
an end-point approaching the pole from the left (the “asymptotic” end-point)
is perturbed by −ε, the lower end-point of a vertical line by −ε2, the upper
end-point of a vertical line by ε2, and an end-point of a curve approaching a
pole from the right by ε.

An x-coordinate of an end-point is represented by an object of type NiX::X with ten-
dency. Which in addition to the x-coordinate provides a method is tending to().
This method returns the amount by which the x-coordinate was perturbed. This
information allows to easily discriminate various end-point types.

4.1.3 AlciX

The AlciX library implements a curve analyzer for arbitrary-degree algebraic
curves for Gaps(for details see [Ker06]). The main class Algebraic curve 2 is
instantiated with Arithmetic traits template argument which is the model of
ArithmeticTraits concept.

In the present work the AlciX library is used to decompose an algebraic curve
into a set of sweepable segments (for definition of a sweepable segment see
section 2.2). A generic curve-decomposition algorithm is realized in functor
SoX::Curve to segments as a part of Gaps. It is instantiated with Segment 2
and Algebraic curve 2 (AcX::Algebraic curve 2 in our case) template pa-
rameters. Then, the operator call executes the curve analyzer and returns a list
of sweepable segments.

Below we describe the most relevant methods of class Algebraic curve:

� f() returns the defining polynomial of an algebraic curve.
� event info at x(Algebraic real x) intersects a curve with a vertical

line at x and returns an object of type Vert line describing the curve’s
topology at this x-coordinate. This data is used in order to obtain isolating
intervals for y-coordinates of segment’s end-points.

� analyse() analyses curve’s topology, in fact, it decomposes the curve into
sweepable segments.

� refine all(Rational precision) refines isolating intervals for x-coordinates
of all event points until a certain precision is reached.

Vert line class is a successor of SoX::Event1 info. It describes the topology
of a curve over an event x-coordinate. It gives the following information: how
many real arcs (without multiplicities) intersect and how many isolated points
lie on the vertical line at this x-coordinate; has the curve a vertical line; is there
a vertical asymptote and how many arcs approach it from left and right and at
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minus and plus infinity.

The most relevant methods of this class are the following:

� refine to(int j, Rational eps) refines the y-coordinate of the jth in-
tersection point between the curve and this event line until certain preci-
sion.

� upper boundary(int j) returns an upper boundary of the jth isolating
interval of the y-coordinate.

� lower boundary(int j) returns a lower boundary of the jth isolating
interval of the y-coordinate.

� interval length(int j) returns the length of the jth isolating interval.

4.2 Curve renderer design

In this section we discuss the main implementation details of the curve renderer.
Note that the curve parts of Exacus contain different implementations for visu-
alization. ConiX and QuadriX use parameterization of curve segments, while
CubiX exploits a subdivision algorithm to visualize complete curves and AlciX
has no visualization at all.

The main goal of this work is to provide a unified reliable and exact visualiza-
tion algorithm for ConiX, CubiX and QuadriX libraries and, in particular, a
visualization algorithm for the AlciX library. The algorithm is realized as part
of Gaps since it can be used to render arbitrary plane algebraic curves.

The code of the curve renderer is concentrated into 5 main classes: SoX::Gfx GAPS 2,
SoX::Curve renderer 2, SoX::Affine form, SoX::Subdivision 2 and CGAL::Qt wid-
get Curve renderer 2. We consider them one after another.

4.2.1 Gfx GAPS 2

SoX::Gfx GAPS 2 is a successor of SoX::GAPS 2, and serves as a wrapper class
for the curve renderer. Its main functionality consists in providing a convenient
interface to the renderer, and switching the renderer to use multi-precision or
exact rational arithmetic if necessary. SoX::Gfx GAPS 2 is instantiated with
three template parameters: GAPS 2 – an instantiation of SoX::GAPS 2 to be
used as a base class, Float – a floating-point number type on which the curve
renderer operates, BigFloat – a multi-precision floating-point number type for
the exact computations.

The public interface of the class contains the following methods:

� setup(x min, y min, x max, y max, res w, res h) initializes the ren-
derer with the boundaries of a drawing window and pixel resolution.
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� draw(Segment 2 seg, OutputIterator& points) draws a distinct curve
segment, the result is returned as a list of pixel coordinates.

� draw(Point 2 seg, OutputIterator& points) draws a point on a curve,
the result is returned as pixel coordinates of a point.

Note that the drawing functions also handle SoX::Insufficient precision ex-
ception which is thrown whenever double precision is not enough to visualize
segment or point of an algebraic curve.

4.2.2 Curve renderer 2

The algorithm is encapsulated in the class SoX::Curve renderer 2. This class
is instantiated with 3 template parameters. Segment 2 and Point 2 are the
types of a curve segment and a curve point respectively, obtained from Gfx GAPS 2.
NT is a main floating-point number type used in all internal computations – user
can either choose double, multi-precision or exact rational arithmetic. The curve
renderer provides the same set of public methods as SoX::Gfx GAPS 2 does, that
is why we do not describe it here.

Now we will illustrate some details of the curve renderer implementation.

Polynomial conversion

First of all, one needs to convert an input polynomial defining an algebraic
curve to a suitable format. In the current implementation input polynomials are
defined over integers which can be arbitrary long. Direct conversion to floating-
point representation is not always possible and may cause the information loss.
That is why, we first normalize all polynomial coefficients by dividing them by
the maximal coefficient and, then, convert the resulting quantities into floating-
point representation. This is done by means of the following adaptor classes:

1 template <class NT>
2 struct Max_coeff

3 {
4 template <class X>
5 NT operator()(const NiX : : Polynomial<X>& p) const
6 {
7 typename NiX : : Polynomial<X>::const_iterator it = p .begin ( ) ;
8 Max_coeff<NT> max_coeff ;
9 NT max(max_coeff(*it ) ) ;

10 while(++it != p .end()) {
11 NT tmp(max_coeff(*it ) ) ;
12 i f (max < ABS(tmp))
13 max = ABS(tmp ) ;
14 }
15 return max ;
16 }
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17 NT operator()(const NT& x) const
18 { return ABS(x ) ; }
19 } ;
20 template <class Result , class Coeff , class Rational , class From_rat ,
21 class Make_exact>
22 struct Transform

23 {
24 Rational max ;
25 typedef Result result_type ;
26 From_rat from_rat ;
27 Make_exact make_exact ;
28 template <class X>
29 Result operator()(const NiX : : Polynomial<X>& p)
30 {
31 Transform<typename Result : : NT , Coeff , Rational , From_rat ,
32 Make_exact> tr ;
33 tr .max = max ;
34 return Result(LiS : : mapper(p .begin() ,tr) ,
35 LiS : : mapper(p .end() , tr ) ) ;
36 }
37 Result operator()(const Coeff& x)
38 {
39 Result tmp = static cast<Result>(from_rat(Rational(x)/max ) ) ;
40 make_exact(tmp ) ;
41 return tmp ;
42 }
43 } ;

The first of them computes the maximal coefficient, and the second divides all
polynomial coefficients by the maximal one. The purpose of Make exact and
From rat adaptors will be explained later in section 4.2.4.

Main data structures

Below we describe the main data structures used by the renderer. The visual-
ization algorithm mainly operates on pixels and subpixels. Our goal was to use
a common data structure for pixels and subpixels which facilitates a subdivision
process, it is represented as follows:

1 template <class Integer>
2 struct Pixel_2

3 {
4 //! pixel coordinates relative to the drawing area
5 int x , y ;
6 //! subpixel coordinates relative to pixel’s boundary
7 Integer sub_x , sub_y ;
8 //! subdivision level: 0 - for pixels, 1 - for 1/2 pixels, etc
9 unsigned level ;
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10 } ;

Here x and y stand for pixel coordinates, whereas sub x and sub y denote rela-
tive subpixel coordinates w.r.t. the pixel’s boundary. Subdivision level counts
how many times the subdivision procedure was applied to a pixel. Any level
greater then 0 defines a subpixel, in particular, a pixel contains 4n subpixels
with subdivision level n – in other words 2n parts in each direction.

Such an integer representation of subpixels helps us to keep away from a great
number of round-off errors which are unavoidable while working with floating-
point representation. Note that the type of subpixel coordinates is given as a
template parameter. This is necessary, since integers would have been enough
to store coordinates for up to 31st subdivision level only, which is not sufficient
when the exact number types are involved. In the latter case, subpixel coordi-
nates could be represented, for instance, by CORE::BigInt number type.

Having this data structure we can outline the most important parts of the im-
plementation. Suppose we have found a subpixel of a pixel p (among 4 possible)
which is crossed by the curve branch. It is given by the index from 0 to 3 – this
index is returned by the procedure get subpixel (see section 3.2.1). Then, the
subdivision step results in the following sequence of operations (one assumes
that subpixels are numbered in the proper order):

1 Pixel_2 new_p ;
2 new_p .x = p .x ;
3 new_p .y = p .y ;
4 new_p .level = p .level + 1;
5 new_p .sub_x = (p .sub_x<<1) + (index&1);
6 new_p .sub_y = (p .sub_y<<1) + (index>>1);

After each successful step of the algorithm we advance pixel coordinates in a
certain direction (the procedure advance pixel from section 3.2.1). This is done
in the following way:

1 void advance_pixel(Pixel_2& pix , int new_dir)
2 {
3 int x_inc = Intern : : directions [new_dir ] . x ,
4 y_inc = Intern : : directions [new_dir ] . y ;
5 i f (pix .level == 0) {
6 pix .x += x_inc ;
7 pix .y += y_inc ;
8 } else {
9 Integer x = pix .sub_x + x_inc ,

10 y = pix .sub_y + y_inc ,
11 pow = (one << pix .level) − 1;
12 (x < 0 ? pix .x−− : x > pow ? pix .x++ : x ) ;
13 (y < 0 ? pix .y−− : y > pow ? pix .y++ : y ) ;
14 pix .sub_x = x & pow ;
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15 pix .sub_y = y & pow ;
16 }
17 }

Here new dir represents a direction (0 . . . 7) of stepping, and the array Intern::di-
rections stores x/y increments in a certain direction.

The procedure get pixel returning a pixel to which a given subpixel belongs is
implemented trivially with our representation. One only needs to compare pixel
coordinates of two pixels. This test is performed each time a new subpixel is
found. Whenever the test reports that pixel coordinates of these two pixels are
different – pixel’s boundary was crossed – a new pixel is added to the list of
plotted pixels.

Cache design

Another important issue of the curve renderer design is a caching mechanism.
Reuse of already precomputed quantities becomes crucial for the performance,
especially at high subdivision levels. The renderer caches univariate polynomi-
als, function evaluations and y-coordinates of segments’ end-points.

Caches are implemented as hashed containers with LRU capabilities, based on
boost::multi index class template from the Boost library.5 Univariate poly-
nomials are hashed by one coordinate – x or y – depending on which coordinate
in a bivariate polynomial is fixed. Polynomial evaluations cache uses composite
hash keys constructed from 2 point coordinates. End-points coordinates are
hashed by unique IDs which have all models of Point 2 concept.

The precached data can be reused during rasterization of different curve seg-
ments (or points) which have the same supporting curve. LRU property ensures
that the most recently used entries are located on the top of the cache. Such
that, by exhaustion of the allocated space, the least recently used entries are
replaced by the new ones.

Moreover, cache data structures are grouped at a higher level called “meta-
cache”. Metacache manages a list of several cache instances and one of them
is always active at a time. One cache instance is assigned to one supporting
curve. Cache instances replace each other depending on which supporting curve
is currently used. As a result, we do not have an additional overhead, when
segments of two (or more) different curves are drawn alternately.

5www.boost.org
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Automatic selection of arithmetic precision

We already mentioned that round-off errors may become fatal for the algorithm
and it is not always possible to prevent them by using advanced techniques ex-
plained in section 3.3.4. That is why we have to switch to a higher-precision
arithmetic. In this section we outline cases when increasing of arithmetic pre-
cision is necessary and how the mechanism is realized.

We support three levels of arithmetic precision, they differ depending on how
polynomial coefficients are represented and which number type is used in all
internal computations:

1st level: polynomial coefficients are stored as double intervals supported by
boost::interval library. All computations are performed in double
arithmetic.

2nd level: polynomial coefficients are represented by single multi-precision arith-
metic numbers (such as CORE::BigFloat), all computations are performed
in multi-precision arithmetic.

3rd level: only exact rational computations are involved.

At first glance, it would be reasonable to use only two levels: double and multi-
precision arithmetic. Indeed, for the latter case one can gradually increase the
precision until the algorithm succeed. However, our approach exploits only ra-
tional computations and the only irrational quantities involved are dimensions
of the drawing window (they can be easily rationalized). At some point it is
advantageous to use only rational arithmetic, since multi-precision arithmetic
with too large mantissas is considerably slow.

Note that, at first two levels all polynomial evaluations are equipped with round-
off tests. If the sign of computed quantity cannot be uniquely determined it is
evaluated once again with exact arithmetic:

1 NT res = evaluate(poly , c1 ) ;
2 i f (error_bounds) {
3 res = evaluate_modular(var , c , key , true ) ;
4 i f (res != 0)
5 res = from_rat(evaluate_rational(var , c , key , true ) ) ;
6 error_bounds = false ;
7 }

Here evaluate stands for generic evaluation procedure, error bounds flag is set
when an interval representing the computed quantity is not strictly positive or
negative. In particular, for double arithmetic checking for incorrect boundaries
is trivial since the result of evaluation is an interval itself. For multi-precision
arithmetic we use an interface provided by a certain number type, for instance,
a function isZeroIn() for CORE::BigFloat returns true if a representation in-
terval includes zero. A function evaluate modular is used for fast zero tests,
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and evaluate rational calculates with exact rational arithmetic.

Different precision levels are supported through an exception mechanism. There
are three criteria indicating that the current arithmetic precision is not sufficient:

� reached the maximum subdivision level specified for the number type.
This limit can be set by the user through Curve renderer traits. The
maximum level essentially depends on the integer number type used to
store subpixel coordinates (for example, 31 for 32-bit integers), and on the
precision of the floating-point number type. However, we suggest to keep
a subdivision level not greater than 12-13, since too high subdivision levels
indicate the lack of arithmetic precision, in this case it’s advantageous to
switch to more precise computations rather than tracing a curve branch
at high subdivision level.

� a subpixel size is beyond the limits of arithmetic precision: a subpixel
is too small such that round-off errors are comparable with the quantity
itself (10−17 for double precision);

� a subpixel was not found: it might happen that during subdivision of a
pixel no intersections with a curve branch were registered, meaning that
the right subpixel cannot be determined. In this case we have probably
taken a wrong direction, again because of inexact computations.

All other erroneous situations finally lead to one of these cases.

4.2.3 Affine arithmetic support

Support for affine arithmetic is implemented in the class template SoX::Af-
fine form. This class realizes basic operations on an affine form as it is pre-
sented in theory. It is instantiated with a template parameter specifying a
floating-point number type. The class supports usual arithmetic operations
such as +, -, * via C++ operators. An affine form can be initialized with a
fixed value or with an interval defining a variable quantity. It provides means
to convert from the affine representation back to the interval.

In fact we implemented two methods for range analysis: Affine Arithmetic and
Modified Affine Arithmetic explained in section 2.3.2. Both use recursive deriva-
tive information. Although more precise, our tests showed MAARD method re-
quires expensive computations, therefore we have fixed on using AARD method.

4.2.4 Curve renderer traits

A class template Curve renderer traits provides usual type-conversions and
also specifies a type-dependent information necessary for the renderer. The
class is initiated with a polynomial coefficient number type, this can be either
a floating-point or rational number type. Let us consider the specialization of
this class for number type NT:
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� Float is a number type used in all internal computations. Note that it
can differ from the number type used to store polynomial coefficients. For
example, we represent coefficients by intervals of doubles but all compu-
tations are performed over doubles.

� Integer is an integer number type used to store subpixel coordinates. In
particular, we use machine int with double-precision floating point, and
CORE::BigInt for CORE::BigFloat.

� To integer adaptor converts Float to integers.
� From rational adaptor converts from rational representation to Float.

Rational number type is specified as a template argument.
� To rational adaptor converts back from Float to rational number type.
� To machine int adaptor converts from Integer number type to machine
int.

� Convert poly serves for conversion from a rational polynomial to a poly-
nomial over number type NT.

� Make exact adaptor is used to set the error component of a multi-precision
floating point number after each inexact operation, such as division, square
root, etc.

� Extract eval converts the result of a polynomial evaluation from a num-
ber type NT to Float. It also sets the flag error bounds if the resulting
interval is not strictly positive or negative.

� Precision limit compares a given quantity with the limit of current
arithmetic precision, returns true if this limit is exceeded.

� MAX SUBDIVISION LEVEL constant defines the maximum subdivision level
for the number type. Setting up too big values for inexact number types
does not raise the precision of computations.

The specialization of this class for the number type NiX::Interval looks as
follows:

1 template <>
2 struct Curve_renderer_traits<NiX : : Interval> {
3 typedef int Integer ;
4 typedef double Float ; //! a floating-point number type
5 typedef NiX : : Interval Coeff ; //! a type of polynomial coefficients
6 struct To_integer {
7 typedef Float argument_type ;
8 typedef Integer result_type ;
9 Integer operator()(const Float& x) const

10 { return static cast<Integer>(floor(x ) ) ; }
11 } ;
12 struct From_rational {
13 typedef Float result_type ;
14 template<class Rational>
15 Float operator()(const Rational& x) const
16 { return NiX : : to_double(x ) ; }
17 } ;
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18 struct To_rational {
19 typedef Float argument_type ;
20 typedef CORE : : BigRat result_type ;
21 CORE : : BigRat operator()(const Float& x) const
22 {
23 return static cast<CORE : : BigRat>(x ) ;
24 }
25 } ;
26 struct To_machine_int {
27 typedef Integer argument_type ;
28 typedef int result_type ;
29 int operator()(const Integer& x) const
30 {
31 return x ;
32 }
33 } ;
34 struct Convert_poly { //! converts a rational polynomial to internal
35 //! representation
36 typedef NiX : : Polynomial<NiX : : Polynomial<Coeff> > result_type ;
37 template <class Rational>
38 result_type operator()(const
39 NiX : : Polynomial<NiX : : Polynomial<Rational>>& poly)
40 {
41 typename NiX : : NT_traits<NiX : : Polynomial<
42 NiX : : Polynomial<Rational> > >::To_Interval to_interval ;
43 return to_interval(poly ) ;
44 }
45 } ;
46 //! converts the result of evaluation from Coeff to Float number type
47 //! sets error bounds flag whenever round-off errors may occur
48 struct Extract_eval {
49 typedef Coeff argument_type ;
50 typedef Float result_type ;
51 Float operator()(const Coeff& x , bool& error_bounds) const
52 {
53 Float l = x .lower() , u = x .upper() , mid = (l+u)/2;
54 error_bounds = (l < 0 && u > 0);
55 return mid ;
56 }
57 } ;
58 //! not necessary for doubles since it is not an exact number type
59 struct Make_exact {
60 typedef Float argument_type ;
61 typedef void result_type ;
62 void operator()(const Float& x) const
63 { }
64 } ;
65 //! compares a given quantity with the precision limit of the number
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66 //! type, returns true if this limit is exceeded
67 struct Precision_limit {
68 typedef Float argument_type ;
69 typedef bool result_type ;
70 bool operator()(const Float& x) const
71 {
72 return (ABS(x) <= 1e−16);
73 }
74 } ;
75 //! maximum subdivision level for the curve renderer by exceeding which
76 //! Insufficient rasterize precision exception is thrown
77 static const unsigned MAX_SUBDIVISION_LEVEL = 16;
78 } ;

4.2.5 Subdivision 2

Space subdivision algorithm was implemented for testing purposes to compare
a visual quality and efficiency of our approach. As a range analysis tool we
employ Recursive Taylor approach presented in [SMW+05]. The algorithm is
fairly simple: in order to rasterize an implicit curve C(f) over a given rectan-
gular interval [x, x] × [y, y] where f(x, y) is a bivariate polynomial we use the
following recursive procedure:

procedure quad tree(x, x, y, y)
1. F← range evaluation(x, x, y, y)

2. if F ≤ 0 ≤ F then
3. if x− x < pixel size and y − y < pixel size then

4. plot pixel(x, x, y, y)
5. else subdivide(x, x, y, y)
end

procedure subdivide(x, x, y, y)
1. x̂← (x + x)/2
2. ŷ← (y + y)/2
3. quad tree(x, x̂, y, ŷ)
4. quad tree(x, x̂, ŷ, y)
5. quad tree(x̂, x, ŷ, y)
5. quad tree(x̂, x, y, ŷ)
end

Here range evaluation(x, x, y, y) denotes application of Recursive Taylor method
on a rectangular interval [x, x]× [y, y].

The public interface of the class consists of three methods:

� setup(x min, y min, x max, y max, res w, res h) initializes the class
with boundaries of the drawing window and pixel resolution.
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� set polunomial(poly) sets up the supporting bivariate polynomial for
algebraic curve.

� draw() rasterizes a given curve over [x min, y min]x[x max, y max] re-
gion.

4.2.6 Providing an interface to CGAL

In light of forthcoming integration of Exacus and Cgal libraries it is extremely
important to provide an intuitively clear and easy-to-use interface with our al-
gorithm to Cgal.

The visualization mechanism of the Cgal library is based on the class CGAL::
Qt widget. It extends the standard functionality of Qt’s QWidget6 with the
ability of drawing various Cgal objects, such as: Delaunay triangulations, ar-
rangements of line segments and circular arcs, polyhedrons, etc. These graphical
primitives are supported through C++ output operator interface. In particu-
lar, each graphic object provides an output operator for CGAL::Qt widget and
outputs its graphical representation to the context. C++ operator overloading
allows to built a uniform and simple interface for all Cgal primitives. Moreover,
the set of supported graphic objects can be easily extended in future versions.

Our interface to Cgal is implemented in a file Qt widget Curve renderer.h
which must be located in Cgal header directory. There are two public functions
to visualize algebraic curve segments and points:

1 //! outputs an algebraic curve segment to Qt widget
2 template <class AlgebraicCurvePair_2>
3 Qt_widget& operator << (Qt_widget& ws ,
4 const SoX : : Algebraic_curve_segment_2<
5 SoX : : Algebraic_curve_point_2<AlgebraicCurvePair_2>>& seg ) ;
6

7 //! outputs an algebraic curve point to Qt widget
8 template <class AlgebraicCurvePair_2>
9 Qt_widget& operator << (Qt_widget& ws ,

10 const SoX : : Algebraic_curve_point_2<AlgebraicCurvePair_2>& pt ) ;

With Cgal interface, visualization of curve segments and points is rather trivial.
Note that, one does not need to instantiate Gfx GAPS 2 explicitly: this happens
automatically in a corresponding output operator. The curve renderer is initial-
ized with the drawing window and pixel resolution obtained from the hosting
CGAL::Qt widget object. It also automatically reacts on any rescalings or shifts
of the widget’s drawing window and changes its parameters appropriately. The
usage of Cgal interface illustrates the following example:

6Further information about Qt widgets can be obtained from http://doc.trolltech.com
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Fig 4.1: The xalci demo program with the description of user interface

1 namespace SoX {
2 typedef GAPS_2<AcX : : Algebraic_curve_pair_2<Algebraic_curve_2> >
3 GAPS_2_inst ;
4 // extract Segment and Point types
5 typedef GAPS_2_inst : : Segment_2 Segment_2 ;
6 typedef GAPS_2_inst : : Point_2 Point_2 ;
7 } // namespace SoX
8

9 SoX : : Segment_2 seg ;
10 CGAL : : Qt_widget widget ;
11 . . .
12 widget << seg ; // output a curve segment to Qt widget
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4.3 The demo program

The executable demo program of the algorithm can be found in AlciX/demos
directory and is called xalci (see Figure 4.1). The program demonstrates usage
of the AlciX library as well as our curve renderer.

Working with xalci is straightforward. First, the user inputs a bivariate poly-
nomial.7 Then, analyzes it by clicking the “Analyze” button. A set of sweepable
segments result from the curve’s decomposition is displayed in the list-box. The
list-box is multi-selectable, such that the user can select certain segments to
rasterize. To visualize a curve completely one should activate the check-box
“rasterize complete curve”. Curve segments are rasterized in different colors to
make them distinguishable by sight, segments’ end-points are marked with big
black dots.

Curve segments in the list-box are represented in the following way:
(from:(X = <x coord 1>, ARCNO = <arcno 1>); to:(X = <x coord 2>,
ARCNO = <arcno 2>); segment arcno: <seg arcno> | vertical),

where <x coord 1/2> and ARCNO = <arcno 1/2> denote x-coordinate and the
arc-number of an end-point respectively, <seg arcno> defines the segment’s
arc-number for non-vertical segments (for details on segment arc-numbers see
section 2.2).

4.4 Benchmarks

To convince the reader about the correctness and efficiency of our approach,
we have measured running times to visualize a set of algebraic curves from the
test suite. Aside from the visual quality we are also concerned with the com-
putational performance of the algorithm. That is why we compared the output
of our algorithm with a general subdivision algorithm implemented within the
frame of our work directly for testing purposes. The latter algorithm employs
Recursive Taylor as 2D range analysis tool described in [SMW+05], unlike gen-
eral Affine Arithmetic this method offers rather better visual quality although
loses in performance.

To measure the running time, we used xalci on a Pentium IV 2,8 Ghz dual core
with 1024 KB cache and 1 GB of RAM under Linux. The demo program was
compiled with the GNU C++ compiler v3.3.5 with optimizations (-O2) and with
all assertions switched off (-DNDEBUG). The exact number types were provided by
the Core library version 1.7. The times were measured with LiS::User timer
which reports on the times allocated by the operating system. We provide the

7Through the specificity of the AlciX library, one can only input polynomials with integer
coefficients. However, this is not a severe restriction, since integer coefficients can be arbitrarily
large and, thus, can approximate any real numbers with the desired precision.
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running times needed for curve analysis using the AlciX library and for curve
rasterization separately, as well as the overall running time. AlciX was set
up to use modular gcd computations from the Ntl library which results in a
significant speed-up.

Our test suite contains examples kindly provided by the author of the AlciX
library ([Ker06]) and also some “famous” algebraic curves taken from the Inter-
net:

� grid 3 is a grid constructed out of vertical and horizontal lines, the total
degree is 3.

� apple 7 is an apple-like curve of total degree 7. This curve already occurs
in [SW05].

� infinitesimal 7 is a curve of total degree 7 with an infinitesimal singular
point in the origin.

� L4 circles is the union of 4 circles w.r.t. the L4 norm, the total degree is
16. The curve is already occurred in [Ker06, SW05].

� ten circles is the union of 10 circles, the total degree is 20. The curve was
taken from [Ker06].

� lemniscate 16 is Erdõs lemniscate of degree 16, i.e., the curve given by an
implicit equation |z8 − 1| = 1 with z = x + yi.

� bundle 26 is a curve of total degree 26, it depicts the curvature of degree
10 lemniscate.

� rand 10 is a curve of total degree 10 with a lot of grid points.
� spiral 38 is a Taylor expansion of order 40 approximating Fermat’s spiral

in the origin.
� inf 7 mul der 23 is a curve of total degree 23, produced by multiplying

infinitesimal 7 with its partial derivatives several times. It contains several
curve branches coming in a “bundle” near the origin.

Our implementation of a space subdivision method uses Recursive Taylor ap-
proach as mentioned before. All partial derivatives are precomputed and stored
in a tree-like structure in order to avoid duplicates, as, for instance, f ′′′xxy = f ′′′xyx.
Practice has shown, that for high-degree polynomials the overhead for calcula-
tions with high-order derivatives increases quite rapidly. That is why, we sug-
gested to use computations with partial derivative up to the order 6 and switch
to the standard Affine Arithmetic for higher-order derivatives. This does not
influence the visible quality, but reduces dependency of the running on polyno-
mial’s degree.

Figures 4.2 and 4.3 display graphs of the curves in the order they are listed above.
Figures 4.4 and 4.5 display the same curves rendered with Recursive Taylor
method. One may observe some visible artifacts, especially in rasterizations of
curves lemniscate 16, bundle 26 and inf 7 mul der 23. Figure 4.6 shows focusing
at a singular point for curves apple 7, infinitesimal 7, then follows two consecutive
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Curve Analyze Rasterize Zoom on point Subdivision

grid 3 0.008 0.09 – 0.65
apple 7 0.168 0.16 0.43 4.42

infinitesimal 7 0.02 0.116 0.136 2.08
L4 circles 16.2 0.83 3.89 32.66
ten circles 57.99 13.36 – 115.7

lemniscate 16 22.19 0.808 1.28 36.6
bundle 26 108.2 6.97 8.25 186
rand 10 22.3 6.5 – 19.0
spiral 38 229.5 68.9 – 512.2

inf 7 mul der 23 44.7 16.0 19.82 283.5

Table 4.1: Time measurements

zooms of L4 circles, and at the end, zooming at a singularity of inf 7 mul der 23.
Remark that, the curve L4 circles has the following equation:

f(x, y) = ((x + 1)4 + (y + 1)4 − 2) · ((x + 1)4 + (y − 1)4 − 2) ·
((x− 1)4 + (y + 1)4 − 2) · ((x− 1)4 + (y − 1)4 − 2− 10−5).

In other words, it consists of four circles w.r.t. the L4 norm, the radius of one
of them is slightly enlarged causing new singularities close to the origin. This
can be observed in the figure.
Table 4.1 shows the time measurements for our algorithm and Recursive Taylor
approach, the pictures were taken with resolution 1024× 700, all running times
are given in seconds. The column “Analyze” represents the time required to
decompose a curve into sweepable segments using the AlciX library; “Raster-
ize” denotes the time taken to rasterize a complete curve using our approach;
“Zoom on point” specifies the time to rasterize a curve after zooming on a sin-
gular point, this typically takes more time since curve branches come closer to
each other in this region; the last column gives the times for space subdivision
approach. From the table one can see that our approach outperforms the space
subdivision. Moreover, for complicated curves analyze phase generally takes
more time than rasterization. This can be put as an advantage of our approach:
indeed, we are only required to analyze the curve once and, then, can zoom and
shift it arbitrary or visualize distinct segments without any additional overhead.
On the other hand, once a polynomial degree gets higher the effort required to
refine the coordinates of segments’ end-points grows quite rapidly. Such that
for complicated curves a refinement phase typically takes more time than the
“pure” visualization. However, this time depends on the concrete algorithm used
to manage and refine intervals and, therefore, is not the object of our discussion.

The table also shows a strong dependency of the space subdivision method on
the polynomial’s degree. This is due to the fact that the subdivision method em-
ploys 2D range analysis which involves calculations of mixed derivatives whose
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number growth quadratically w.r.t. the degree of a polynomial, whereas our ap-
proach needs only 1-dimensional analysis and, thus, complexity of calculations
depends linearly on the polynomial’s degree.
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Fig 4.2: Segment renderer: grid 3, apple 7, infinitesimal 7, L4 circles and
ten circles



Fig 4.3: Segment renderer: lemniscate 16, bundle 26, rand 10, spiral 38 and
inf 7 mul der 23



Fig 4.4: Space subdivision: grid 3, apple 7, infinitesimal 7, L4 circles, L4 circles
and ten circles



Fig 4.5: Space subdivision: lemniscate 16, bundle 26, rand 10, spiral 38 and
inf 7 mul der 23



Fig 4.6: Focus on point: apple 7, infinitesimal 7, L4 circles, L4 circles and
inf 7 mul der 23



Chapter 5

Conclusion

Summary and Outlook

Within the frame of this thesis the algorithm for visualization of points and seg-
ments of algebraic curves was developed and implemented as part of Exacus
libraries.

Due to adaptive subdivision and optimization technique we can handle highly
degenerate cases and discriminate curve segments located very close to each
other. By keeping track of round-off errors our approach offers correct and re-
liable visualization using only double-precision arithmetic. However, to handle
exceptional cases we developed a three-level model to gradually increase the
arithmetic precision in case of need.

With the help of this algorithm one is able draw polygons whose boundaries are
defined by segments of arbitrary-degree plane algebraic curves. Moreover, the
algorithm can be used to unify a curve rasterization procedure for all Exacus
libraries.

As a future development in this area, one, for instance, may think of extending
the algorithm ideas to rasterize algebraic curves or surfaces in 3D or to adapt
the existent approach to rasterize complete algebraic curve without costly pre-
processing step.

Performance tuning may also be an object of future research: indeed, in the long
run the overall performance greatly depends on used range analysis method.
That is why, enhancing the present range analysis techniques to make them less
expensive and to obtain more tight bounds may result in a significant perfor-
mance increase. However, the performance partly depends on a curve analysis
technique, which should also evolve accordingly to achieve competitive results.
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