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Abstract. In this paper we report on the recent progress in comput-
ing bivariate polynomial resultants on Graphics Processing Units (GPU).
Given two polynomials in Z[x, y], our algorithm first maps the polynomi-
als to a prime field. Then, each modular image is processed individually.
The GPU evaluates the polynomials at a number of points and computes
univariate modular resultants in parallel. The remaining “combine” stage
of the algorithm is executed sequentially on the host machine. Porting
this stage to the graphics hardware is an object of ongoing research.
Our algorithm is based on an efficient modular arithmetic from [1]. With
the theory of displacement structure we have been able to parallelize the
resultant algorithm up to a very fine scale suitable for realization on the
GPU. Our benchmarks show a substantial speed-up over a host-based
resultant algorithm [2] from CGAL (www.cgal.org).

Keywords: polynomial resultants, modular algorithm, parallel compu-
tations, graphics hardware, GPU, CUDA.

1 Overview

Polynomial resultants play an important role in the quantifier elimination the-
ory. They have a comprehend applied foreground including but not limited to
topological study of algebraic curves, curve implitization, geometric modelling,
etc. The original modular resultant algorithm was introduced by Collins [3]. It
exploits the “divide-conquer-combine” strategy: two polynomials are reduced
modulo sufficiently many primes and mapped to homeomorphic images be eval-
uating them at certain points. Then, a set of univariate resultants is computed
independently for each prime, and the result is reconstructed by means of poly-
nomial interpolation and the Chinese Remainder Algorithm (CRA). A number
of parallel algorithms have been developed following this idea: those special-
ized for workstation networks [4] and shared memory machines [5, 6]. In the
essence, they differ in how the “combine” stage of the algorithm (polynomial
interpolation) is realized. Unfortunately, these algorithms employ polynomial
remainder sequences [7] (PRS) to compute univariate resultants. The PRS algo-
rithm, though asymptotically quite fast, is sequential in nature. As a result, the
Collins’ algorithm in its original form admits only a coarse-grained paralleliza-
tion which is suitable for traditional parallel platforms but not for systems with
the massively-threaded architecture like GPUs (Graphics Processing Units).
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That is why, we have decided to use an alternative approach based on the the-
ory of displacement structure [8] to compute univariate resultants. This method
reduces the problem to matrix computations which commonly map very well
to the GPU’s threading model. The displacement structure approach is tradi-
tionally applied in a floating-point arithmetic, however, using square-root and
division-free modifications [9], we have been able to adapt it to work in a prime
field. As of now, the research is carried out to port the remaining algorithm
stages (polynomial interpolation and the CRA) to the GPU. Modular computa-
tions still constitute a big challenge on the GPU, see [10,11]. Our algorithm uses
the fast modular arithmetic developed in [1] which is based on mixing floating-
point and integer computations, and is supported by the modified CUDA [12]
compiler1. This allowed us to benefit from the multiply-add capabilities of the
graphics hardware and minimize the number of instructions per modular oper-
ation, see Section 4.3.

The rest of the paper is structured as follows. In Section 2 we state the problem
in mathematically rigorous way and give an overview of the displacement struc-
ture which constitutes the theoretical background for our algorithm. Section 3
surveys the GPU architecture and CUDA programming model. In Section 4 we
present the overall algorithm and discuss how it maps to the graphics hardware.
Finally, Section 5 provides an experimental comparison of our approach with a
host-based algorithm and discusses feature research directions.

2 Problem Statement and Mathematical Background

In this section we define the resultant of two polynomials and give an introduc-
tion to the theory of displacement structure which we use to compute univariate
resultants.

2.1 Bivariate Polynomial Resultants

Let f and g be two polynomials in Z[x, y] of y-degrees p and q respectively:
f(x, y) =

∑p
i=0 fi(x)yi and g(x, y) =

∑q
i=0 gi(x)yi. Let r = resy(f, g) denote

the resultant of f and g with respect to y. The resultant r is defined as the
determinant of (p + q) × (p + q) Sylvester matrix S:

r = det(S) = det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

fp fp−1 . . . f0 0 . . . 0

0
. . . . . . . . .

...
0 . . . 0 fp fp−1 . . . f0

gq gq−1 . . . g0 0 . . . 0

0
. . . . . . . . .

...
0 . . . 0 gq gq−1 . . . g0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

1 http://www.mpi-inf.mpg.de/~emeliyan/cuda-compiler
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Accordingly, the resultant of two monic polynomials f/fp and g/gq relates to
resy(f, g) as follows:

resy(f, g) = f q
pgp

q · resy(f/fp, g/gq).

Note that, the resultant is a polynomial in Z[x]. Using modular and evaluation
homomorphisms one can effectively avoid the arithmetic in polynomial domain
as discussed in Section 4.

2.2 Displacement Structure and the Generalized Schur Algorithm
in Application to Polynomial Resultants

We consider a strongly regular matrix M ∈ Z
n×n2. The matrix M is said to

have a displacement structure if it satisfies the displacement equation:

ΩMΔT − FMAT = GJBT ,

where Ω, Δ, F, A ∈ Z
n×n are lower-triangular matrices, J ∈ Z

r×r is a signature
matrix, G and B ∈ Z

n×r are generator matrices, such that GJBT has a constant
rank r < n. Then, r is called a displacement rank of M . We refer to [8, 13] on
the algorithms for general displacement structure and focus our attention on
resultants.

Let f, g ∈ Z[x] be two polynomials of degrees p and q respectively, and
S ∈ Z

n×n be the associated Sylvester matrix (n = p + q). The matrix S is
structured and has a displacement rank 2. It satisfies the displacement equation:
S − ZSZT = GJBT , where Z is a down-shift matrix zeroed everywhere except
for 1’s on its subdiagonal, J = I ⊕ −I ∈ Z

2×2. Accordingly, G, B ∈ Z
n×2 are

generators defined as follows:

BT =
[
fp . . . fp−q+1 fp−q fp−q−1 . . . f0 0 . . . 0
gq . . . g1 g0 − fp −fp−1 . . . −f1

]
G ≡ 0 except for

G0,0 = 1, Gq,1 = −1

Our goal is to obtain an LDUT -factorization of the matrix S, where the ma-
trices L and U are lower triangular with unit diagonals, and D is a diagonal
matrix. Having this factorization, the resultant is: det(S) = det(D) =

∏n
i dii

(the product of diagonal entries of D).
The generalized Schur algorithm computes the matrix factorization by iter-

atively computing the Schur complements of leading submatrices. The Schur
complement R of a submatrix A in M arises in the course of a block Gaussian
elimination performed on the rows of matrix M , and is defined as:

R = M − CA−1B, where M =
[

A B
C D

]

.

The main idea of the algorithm is to operate on low-rank matrix generators
instead of the matrix itself giving an asymptotically fast solution. After n itera-
tions the algorithm returns the Schur complement of an n×n leading submatrix
2 In other words, a matrix whose leading principal minors are non-singular.
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expressed in terms of matrix generators. In each step it brings the generators
to a proper form. Let (Gi, Bi) denote the generators in step i. A proper form
generator Gi has only one non-zero entry in its first row. The transformation
is done by applying non-Hermitian rotation matrices Θi and Γi

3 to Gi and Bi

respectively:

(GiΘi)T = G
T

i =
[

δi ai
1 ai

2 . . .
0 bi

1 bi
2 . . .

]

and (BiΓi)T = B
T

i =
[
ζi ci

1 ci
2 . . .

0 di
1 di

2 . . .

]

.

Once the generators are in proper form, it follows from the displacement equation
that: dii = δiζi. The next generator Gi+1 is obtained from Gi by shifting down
the column with first non-zero entry while keeping the other column intact (for
explanations please refer to [8]):

[
0

Gi+1

]

= ZGi

[
1 0
0 0

]

+ Gi

[
0 0
0 1

]

, where Z is a down-shift matrix.

The generator B is processed by analogy. Remark that, the size of generators is
decreased by one in each step of the algorithm.

2.3 Non-Hermitian Division-Free Rotations

Here the term non-Hermitian means that we apply rotation to a non-symmetric
generator pair (G, B). Our task is to find matrices Θ and Γ satisfying:

[
a b

]
Θ=[

α 0
]
,

[
c d

]
Γ =

[
β 0

]
with ΘJΓ T = J. It is easy to check that these

equations hold for the following matrices:

Θ =
[

c −b/D
−d a/D

]

, Γ =
[

a/D −d
−b/D c

]

, where D = ac − bd.

Note that, these formulae contain divisions which is undesirable as we are go-
ing to apply the algorithm in a finite field. Similar to Givens rotations [9], we
use the idea to defer the division until the end of the algorithm by keeping a
common denominator for each generator column. In other words, we express the
generators in the following way:

GT =
[

1/la 0
0 1/lb

] [
a0 a1 . . .
b0 b1 . . .

]

and BT =
[

1/lc 0
0 1/ld

] [
c0 c1 . . .
d0 d1 . . .

]

,

Then, the generator update (G, B) = (GΘ, BΓ ) proceeds as follows:

ai = la(aic0 − bid0) bi = lb(bia0 − aib0) , where G = (ai, bi),
ci = lc(cia0 − dib0) di = ld(dic0 − cid0) , where B = (ci, di).

It can be shown that the denominators are pairwise equal, thus, we can keep
only two of them. They are updated as follows: la = ld = a0, lc = lb = lal2c .
3 Such matrices must satisfy: ΘJΓ T = J to ensure that the displacement equation

holds after transformation. In other words, we get: GΘJ(BΓ )T = GJBT .
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Apparently, the denominators must be non-zero to prevent the algorithm from
the failure. This is guaranteed by the strong-regularity assumption introduced
in the beginning. However, this is not always the case for Sylvester matrix. In
Section 4.4 we discuss how to deal with this problem.

3 GPU Architecture and CUDA Framework

In this section we consider GPUs with NVIDIA Tesla architecture. The GPU
comprises a set of Streaming Multiprocessor (SMs) which can execute vertex and
fragment shaders as well as general purpose parallel programs. As an example,
the GTX 280 contains 30 SMs. The GPU execution model is known as single-
instruction multiple-thread or SIMT. It means that the SM applies an instruction
to a group of 32 threads called warps which are always executed synchronously.
If thread code paths within a warp diverge, the SM executes all taken paths
serially. Different warps can execute disjoint paths without penalties.

On the top level, threads are grouped in a programmer defined grid of thread
blocks. Such a model creates potentially unlimited parallel resources exploited
dynamically by the target hardware. A thread block can contain up to 512
threads which can communicate using fast on-chip shared memory and synchro-
nization barriers. The code running on the GPU is referred to as a kernel which
is launched on a grid of thread blocks. Different blocks run completely indepen-
dent from each other: data movement between thread blocks can be realized by
splitting a program in two or more kernel launches4.

CUDA memory model is built on five memory spaces. Each thread has a stat-
ically allocated fast local storage called register file. Registers is a scarce resource
and should be used carefully to prevent spilling. The SM has a fixed amount of
per-block on-chip shared memory (16 Kb). Shared memory is divided in 16 banks
to facilitate concurrent access. The GPU has two cached memory spaces – read-
only constant and texture memory – that are visible to all thread blocks and have a
lifetime of an application. The remaining read-write global memory is also visible
to the entire grid but is not cached on the device. It is crucial to stick to memory
coalescing patterns in order to use the global memory bandwidth effectively.

4 Mapping Resultants Algorithm to Graphics Hardware

In this section we consider the algorithm step-by-step. We start with a high-level
overview, then consider computation of univariate resultants and 24-bit modular
arithmetic. Finally, we discuss the main implementation details and outline some
ideas about the polynomial interpolation on the GPU.

4.1 Algorithm Overview

Our approach follows the “divide-conquer-combine” strategy of Collins’ modular
algorithm. At the beginning, the input polynomials are mapped to a prime field
4 Block independence guarantees that a binary program will run unchanged on the

hardware with any number of SMs.
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for sufficiently many primes. The number of primes depends on the height of
the resultant coefficients which is given by Hadamard’s bound, see [14]. For each
prime mi we compute resultants at x = α0, x = α1, . . . ∈ Zmi . The degree bound
(the number of evaluation points αk) can be devised from the entries of Sylvester
matrix [14]. The resultant r ∈ Z[x] is reconstructed from modular images using
polynomial interpolation and the CRA. The first part of the algorithm is run
on the GPU: we launch a kernel on a 2D grid N × S,5, where one thread block
evaluates polynomials and computes one univariate resultant. The univariate
resultant algorithm will be discussed in Section 4.2.

In order for the algorithm to work properly, we need to handle “bad” primes
and evaluation points adequately. For two polynomials f, g ∈ Z[x, y] as defined
in Section 2.1, a prime m is said to be bad if fp ≡ 0 mod m or gq ≡ 0 mod m.
Similarly, an evaluation point α ∈ Zm is bad if fp(α) ≡ 0 mod m or gq(α) ≡
0 mod m. “Bad” primes can be discarded quite easily: we do this during the
initial modular reduction of polynomial coefficients prior to the grid launch. To
deal with “bad” evaluation points we enlarge the grid by a small amount of
excessive points (1–2%) such that, if for some points the algorithm fails, we
still have enough information to reconstruct the result. The same technique is
used to deal with non-strongly regular Sylvester matrices, see Section 2.3. In
fact, non-strong regularity corresponds to the case where polynomial coefficients
are related via some non-trivial equation which occurs rarely in practise and is
confirmed by our tests (see Section 5). Indeed, if for some αk Sylvester matrix is
ill-conditioned, instead of using intricate methods, we simply ignore the result
and take another evaluation point. In a very “unlucky” case when we cannot
reconstruct the resultant due to the lack of points, we launch another grid to
compute extra information.

It is worth mentioning, that the another interesting approach to compute
polynomial resultants is given in [15]. It is based on modular arithmetic and
linear recurring sequences. Although, this algorithm seemingly has a connection
to the PRS, it is yet unclear whether it can be a good candidate for realization
on the GPU.

4.2 Univariate Resultant Algorithm

The resultant res(f, g) mod mi at x = αj is computed using the method ex-
plained in Section 2.2. In each iteration the algorithm multiplies the generators
by rotation matrices collecting one factor of the resultant per iteration. Then,
the generator columns are shifted down to obtain the generators for the next it-
eration. After n = p + q iterations (notations are as in Section 2.2), the product
of the factors yields the resultant.

The original algorithm can largely be improved. First, we write the generators
as pairs of column vectors: G = (a, b), B = (c, d). Now, remark that, at the be-
ginning G ≡ 0 except for two entries: a0 = 1, bq = −1. If we run the algorithm
on monic polynomials6, we can observe that the vectors a, b and c stay constant
5 Here N denotes the number of moduli, and S – the number of evaluation points.
6 In other words, on polynomials with unit leading coefficients.
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during the first q iterations of the algorithm (except for a single entry aq). In-
deed, because polynomials are monic, c0 and d0 are initially ones, and so is the
denominator of the rotation matrices (see Section 2.3): D = a0c0−b0d0 = c0 ≡ 1.
Thus, we can get rid of the denominators completely which greatly simplifies the
rotation formulae. Moreover, the first q factors of the resultant returned by the
algorithm are unit, therefore we can skip them. However, we need to multiply
the resultant by f q

pgp
q as to compensate for running the algorithm on monic poly-

nomials. The pseudocode is given below:

1: procedure resultant univariate(f : Polynomial, g : Polynomial)
2: p = degree(f), q = degree(g), n = p + q
3: f ← f/fp, g← g/gq � convert polynomials to monic form
4: G = (a,b), B = (c,d) � set up generators: see Section 2.2 for details
5: for j = 0 to q− 1 do � first q iterations are simplified
6: di ← di − cidj for ∀i = j + 1 . . . n− 1 � multiply by the rotation matrix
7: aq = dj � update a single entry of a
8: ai+1 ← ai, ci+1 ← ci for ∀i = j + 1 . . . n− 2 � shift down the generators
9: end for

10: la = 1, lc = 1, res = 1, lres = 1 � denominators and resultant are set to 1
11: for j = q to n− 1 do
12: for i = j to n− 1 do � multiply the generators by rotation matrices
13: s = la(aicj − bidj), bi = lc(biaj − aibj), ai = s
14: t = lc(ciaj − dibj), di = la(dicj − cidj), ci = t
15: end for
16: lc = lal

2
c , la = aj, res = res · cj, lres = lres · lc � update the denominators

17: ai+1 ← ai, ci+1 ← ci for ∀i = j . . . n− 2 � shift down the generators
18: end for
19: return res · fqp · gp

q/lres � return the resultant
20: end procedure

We will refer to iterations j = 0 . . . q − 1 and j = q . . . n − 1 as type S and
T iterations respectively. For division in lines 3 and 19 we use the modified
Montgomery modular inverse [16] with improvements from [17]. The number
of iterations of this algorithm is bounded by moduli bitlength (24 bits), see
Appendix A.

4.3 24-Bit Modular Arithmetic on the GPU

Modular multiplication is a challenging problem due to the limited hardware
support for integer arithmetic. The GPU natively supports only 24-bit integer
multiplication realized by mul24.lo and mul24.hi instructions7. However, the lat-
ter instruction is not exposed by CUDA API. To overcome this limitation, the
authors of [10] propose to use slow 32-bit multiplication, while the tests from [11]
show that 12-bit arithmetic is faster because modular reduction can be done in
floating-point without overflow concerns.

7 They return 32 least and most significant bits of the product of 24-bit operands
respectively.
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We use the arithmetic based on mixing floating-point and integer computa-
tions [1] which is supported by the patched CUDA compiler8. In what follows,
we will refer to umul24 and umul24hi as intrinsics for mul24.lo and mul24.hi re-
spectively. The procedure mul mod in Algorithm 1 computes a · b mod m for
two 24-bit residues. The idea is to split the product as follows: a · b = 216hi + lo
(32 and 16 bits), and then use a congruence (0 ≤ λ < m):

216hi + lo = (m · l + λ) + lo ≡m λ + lo = 216hi + lo − m · l = a · b − l · m = r

It can be checked that r ∈ [−2m + ε; m + ε] for 0 ≤ ε < m. Thus, r fits in a
32-bit word and it suffices to compute only 32 least significant bits of products
(a · b and m · l) as shown in line 5 of the algorithm. Finally, the reduction in lines
6–7 maps r to the valid range [0;m − 1].

The next procedure sub mul mod is an extended version of mul mod which
is used to implement matrix rotations: it evaluates (x1y1 − x2y2) mod m (see
Section 2.3). The algorithm computes the products x1y1 and x2y2, and sub-
tracts partially reduced residues. Adding m · 100 in line 14 is necessary to keep
the intermediate result positive since umul24 operation in line 16 cannot handle
negative operands. In total, line 14 is compiled in 4 multiply-add (MAD) instruc-
tions9. The remaining part is an inlined reduce mod operation (see [1]) with a
minor change. Namely, in line 15 we use the mantissa trick [18] to multiply by
1/m and round the result down using a single MAD instruction.

4.4 Putting It All Together

Having all the ingredients at hand, we can now discuss how the algorithm maps
to the GPU. The GPU part of the algorithm is realized by two kernels, see
Figure 1 (a). The first kernel calculates modular resultants, while the second one
eliminates zero denominators from the input sequence and multiplies resultants
by respective modular inverses l−1

res . Grid configuration for each kernel launch is
shown to the left.

The number of threads per block for the first kernel depends on the maximal
y-degree of polynomials being processed. We will use the notation: p = degy(f),
q = degy(g), where f, g ∈ Z[x, y] and p ≥ q. We provide three kernel instanti-
ations for different polynomial degrees: kernel A with 64 threads per block for
p ∈ [32, 63]; B – 96 threads for p ∈ [64, 95]; and C – 128 threads for p ∈ [96, 127].
One reason behind this configuration is that we use p + 1 threads to evaluate
coefficients of f at x = αi in parallel using Horner form (the same for g). The
resultant algorithm consists of one outer loop split up in iterations of type S and
T , see Section 4.1. The inner loop of the algorithm is completely vectorized: this
is another reason why we need the number of threads to match the polynomial
degree. Remark that, in each iteration the size of the generators decreases by
8 http://www.mpi-inf.mpg.de/~emeliyan/cuda-compiler
9 The graphics hardware supports 24-bit integer as well as floating-point MADs.

The compiler aggressively optimizes subsequent multiply and adds to use MAD
instructions.
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Algorithm 1. 24-bit modular arithmetic on the GPU

1: procedure mul mod(a, b, m, invm) � invm = 216/m (in floating-point)
2: hi = umul24hi(a, b) � high 32 bits of the product
3: prodf = fmul rn(hi, invm) � multiply in floating-point
4: l = float2uint rz(prodf) � integer truncation: l = �hi · 216/m�
5: r = umul24(a, b)− umul24(l, m) � now r ∈ [−2m + ε;m + ε] with 0 ≤ ε < m
6: if r < 0 then r = r + umul24(m, 0x1000002) fi � multiply-add: r = r + m · 2
7: return umin(r, r−m) � return r = a · b mod m
8: end procedure
9: procedure sub mul mod(x1, y1, x2, y2, m, invm1, invm2)

10: h1 = umul24hi(x1, y1), h2 = umul24hi(x2, y2) � two inlined mul mod’s
11: pf1 = fmul rn(h1, invm1), pf2 = fmul rn(h2, invm1) � invm1 = 216/m
12: l1 = float2uint rz(pf1), l2 = float2uint rz(pf2)
13: � compute an intermediate product r, mc = m · 100:
14: r = mc + umul24(x1, y1)− umul24(l1, m)− umul24(x2, y2) + umul24(l2, m)
15: rf = uint2float rn(r) ∗ invm2 + e23 � invm2 = 1/m, e23 = 223, rf = �r/m�
16: r = r − umul24(float as int(rf), m) � r = r − �r/m� ·m
17: return (r < 0 ? r + m : r)
18: end procedure

1, and so is the number of working threads, see Figure 1 (b). To achieve higher
thread occupancy, we unroll the type S iterations by the factor of 2. In this way,
we double the maximal degree of polynomials that can be handled, and ensure
that all threads are occupied. Moreover, at the beginning of type T iterations
we can guarantee that not less than half of threads are in use in the corner case.
We keep the column vectors a and c of the generators G = (a, b) and B = (c, d)
in shared memory because they need to be shifted down in each iteration. The
vectors b and d are located in register space. Accordingly, each iteration (of type
S or T ) consists of fetching current first rows of G and B (these are shared by
all threads), transforming the generators using sub mul mod operation, saving
computed factors in shared memory (only for type T iterations), and shifting
down the columns a and c, see Figure 1 (b). Also, during type T iterations we
keep track of the size of generators and switch to iterations without sync on cross-
ing the warp boundary10. The final result is given by the product f q

pgp
q · ∏i dii

(see Section 2.2). We compute this product efficiently using “warp-sized” reduc-
tions [19]. The idea is to run prefix sums for different warps separately omitting
synchronization barriers, and then combine the results in a final reduction step,
see Figure 1 (c). The second kernel, launched with 128 threads, runs stream
compaction for each modulus in parallel, and then computes modular inverses
for the remaining entries. Stream compaction algorithm is also based on “warp-
sized” reductions11.

10 Warp, as a minimal scheduling entity, is always executed synchronously, hence,
shared memory access not need to be synchronized.

11 Stream compaction can be regarded to as an exclusive prefix sum of 0’s and 1’s
where 0’s correspond to elements being eliminated.
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Fig. 1. (a) GPU part of the algorithm consisting of two kernel launches (N – number of
moduli, S – number of eval. points); (b) vector updates during the type T iterations (tid
denotes the thread ID); (c) warp-sized reduction (prefix sum)

4.5 Polynomial Interpolation

Now we sketch some ideas on how to realize polynomial interpolation efficiently
on the GPU. The task of interpolation is to find a polynomial f(x), deg(f) ≤
n, satisfying the following set of equations: f(αi) = yi, for 0 ≤ i ≤ n. The
polynomial coefficients ai are given by the solution of an (n + 1) × (n + 1)
Vandermonde system:

V a = y, where V is a Vandermonde matrix: Vij = αj
i (i, j = 0, . . . , n).

Vandermonde matrix is structured and has a displacement rank 1. Thus, we can
adapt the generalized Schur algorithm to solve the linear system in a small par-
allel time. Namely, if we apply the algorithm to the following matrix embedding:

M =
[

V −y
I 0

]

,

then after n+1 steps we obtain the Schur complement R of a submatrix V which
is equal to: R = 0 − IV −1(−y) = V −1y, i.e., the solution of a Vandermonde
system.

5 Experiments and Conclusion

We have tested our algorithm on the GeForce GTX 280 graphics processor. As a
reference implementation we have use the resultant algorithm [2] from CGAL12

12 www.cgal.org
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Table 1. Timings. First column. p and q: polynomial y-degrees; points: # of evalua-
tion points; moduli: # of 24-bit moduli; Second column. eval: polynomial evaluation;
res: univariate resultants; interp: polynomial interpolation; CRA: Chinese remaindering;
ERR: # of wrong entries computed

parameters CPU timing CPU eval + GPU eval + ratio ERR
setup breakdown resultant resultant

p : 32, q : 32 eval: 29.5 s, res: 25.4 s 54.9 s 131.6 ms 417x 1
points: 970 interp: 27.6 s, CRA: 0.63 s
moduli: 96 total: 83.8 s

p : 50, q : 43 eval: 26.1 s, res: 47.0 s 73.1 s 175.7 ms 415x 0
points: 940 interp: 26.9 s, CRA: 0.69 s
moduli: 101 total: 101.0 s
p : 63, q : 63 eval: 55.1 s, res: 148.4 s 203.5 s 393.5 ms 517x 3
points: 1273 interp: 65.7 s, CRA: 1.32 s
moduli: 136 total: 271.1 s
p : 70, q : 64 eval: 48.7 s, res: 129.2 s 177.9 s 492.6 ms 361x 4
points: 1354 interp: 57.2 s, CRA: 1.0 s
moduli: 102 total: 236.1 s

p : 95, q : 95 eval: 45.0 s, res: 292.5 s 337.5 s 752.5 ms 448x 2
points: 1152 interp: 57.8 s, CRA: 1.3 s
moduli: 145 total: 397.1 s

p : 120, q : 99 eval: 71.3 s, res: 461.2 s 532.5 s 1363.6 ms 390x 3
points: 1549 interp: 93.3 s, CRA: 1.53 s
moduli: 130 total: 627.9 s

(Computational Geometry Algorithms Library) run on the 2.5Ghz Quad-Core
Intel Xeon E5420 with 12MB L2 cache and 8Gb RAM under 32-bit Linux plat-
form. The code has been compiled with ‘–DNDEBUG –O3 –march=core2’ op-
tions. We have benchmarked the first two stages of the host-based algorithm
(evaluate + resultant) and compared them with our realization. Table 1 sum-
marizes the running time for different configurations. The GPU timing includes
the time for GPU–host data transfer for objective comparison. The number of
evaluation points has been increased by 2% to accommodate “unlucky” primes.
The total number of evaluation points for which the algorithm fails is given by
the column ERR in the table. The tests confirm that, indeed, this occurs rarely
on the average. Observe that, the maximal speed-up is attained for p = {63, 95}
(see Table 1): this is no surprise as these parameters correspond to the full thread
occupancy. In total, one can see that our algorithm outperforms the CPU im-
plementation by a large factor. Moreover, due to the vast amount of blocks
executed13, the algorithm achieves a full utilization of the GTX280 graphics
card and we expect the performance to scale well on forthcoming GPUs.

The left graph in Figure 2 examines the performance depending on the poly-
nomials y-degree (which are chosen to be equal) with the number of moduli
and evaluation points fixed to 128 and 1000 respectively. One can see that the

13 Recall that, the grid size equals to ‘number of moduli’ × ‘number of points’.
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Fig. 2. The running time as a function of the polynomials’ y-degree (left) and x-degree
(right)

performance scales linearly with the degree. This is an expected behavior because
the algorithm consists of one outer loop (while the inner loop is vectorized). Per-
formance degradation at the warp boundary (64 and 96) is due to switching to
a larger kernel once all thread resources are exhausted. It might be possible
to smooth “stairs” by dynamically balancing the thread workload. The second
graph in Figure 2 evaluates how the running time grows with the x-degree (and
y-degree fixed). Linear dependency is because of the fact that the x-degree only
causes the number of evaluation points (one grid dimension) to increase while
the number of moduli remains the same.

To conclude, we have identified that with the approach of displacement struc-
ture we can harness the power of GPUs to compute polynomial resultants. Our
algorithm has achieved a considerable speed-up which was previously beyond
the reach of traditional serial algorithms. Certainly, this is only the first step in
realization of a complete and robust resultant algorithm on graphics hardware.
From Table 1 one can see that polynomial interpolation could be quite expen-
sive. Nevertheless, our benchmarks clearly show that graphics processors have a
great performance potential in such a not yet well-explored application domain.
Moreover, with the ideas from Section 4.4, we are currently underway to realize
polynomial interpolation on the GPU.
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A Montgomery Modular Inverse Algorithm

To realize efficient Montgomery modular inverse on the GPU, we have com-
bined the algorithm from [16] with ideas from [17], and took advantage of the
fast 24-bit integer multiplication supported by the GPU. The algorithm com-
prises two stages. In the first stage we iteratively compute x−12k mod m14, where
s ≤ k ≤ 2s and s = �log2 m�. Then, we run two Montgomery multiplications by
the powers of two to get rid of 2k factor. The pseudocode is given below:

1: procedure montgomery inverse(x, m, mu) � computes x−1 mod m
2: v = x, u = m, s = 1, r = 0, k = 0 � x is a 24-bit residue modulo m
3: repeat � first stage: compute r = x−12k mod m iteratively
4: tmprs = r
5: if v mod 2 = 1 then
6: safeuv = v
7: if (v xor u) < 0 then v = v + u else v = v − u fi
8: if (v xor safeuv) < 0 then u = safeuv, tmprs = s fi
9: s = s + r

10: fi
11: v = v/2, r = tmprs · 2, k = k + 1
12: until v 	= 0
13: r = m− r � second stage: get rid of 2k factor
14: if r < 0 then r = r + m fi � r = x−12k mod m, 24 ≤ k ≤ 48
15: if k > 24 then � first multiply: r = (x−12k)(2−m) = x−12k−m (mod m)
16: c = umul24(r, mu) � mu = −m−1 mod 224

17: lo = umul24(c, m), hi = umul24hi(c, m) � (hi, lo) = c ·m (48 bits)
18: lo = umul24(lo, 0x1000001) + r � lo = (lo mod 224) + r
19: r = hi/28 + lo/224 , k = k− 24 � r = (lo, hi)/224

20: fi
21: � second Montgomery multiply: r = (x−12k)(2m−k)(2−m) = x−1 (mod m)
22: c = r · 224−k, d = umul24(c, mu) � mu = −m−1 mod 224

23: lo = umul24(d, m), hi = umul24hi(d, m) � (hi, lo) = d ·m (48 bits)
24: d = r/2k, lo = lo mod 224

25: lo = umul24(c, 0x1000001) + lo � lo = (c mod 224) + r
26: r = hi/28 + d + lo/224

27: return r
28: end procedure

14 The number of iterations is bounded by moduli bit-length (24 bits).


