
On the Complexity of Solving a
Bivariate Polynomial System

Pavel Emeliyanenko
Max-Planck-Institut für Informatik, Germany

asm@mpi-inf.mpg.de

Michael Sagraloff
Max-Planck-Institut für Informatik, Germany

msagralo@mpi-inf.mpg.de

ABSTRACT
We study the complexity of computing the real solutions of
a bivariate polynomial system using the recently presented
algorithm Bisolve [2]. Bisolve is an elimination method
which first projects the solutions of a system onto the x- and
y-axes and, then, selects the actual solutions from the so in-
duced candidate set. However, unlike similar algorithms,
Bisolve requires no genericity assumption on the input nor
it needs any change of the coordinate system. Furthermore,
extensive benchmarks from [2] confirm that the algorithm
outperforms state of the art approaches by a large factor. In
this paper, we show that, for two polynomials f, g ∈ Z[x, y]
of total degree at most n with integer coefficients bounded
by 2τ , Bisolve computes isolating boxes for all real solu-
tions of the system f = g = 0 using Õ(n8 + n7τ) bit op-
erations1, thereby improving the previous record bound by
four magnitudes.

1. INTRODUCTION
Systems of polynomial equations naturally arise in many

fields of science and engineering. In computational geome-
try and computer graphics, there is a particular interest in
the study of polynomial systems in two or three variables:
Almost all existing exact and complete algorithms for com-
puting the topology or an arrangement of algebraic curves [4,
10] (and surfaces [3]) are crucially based on determining so-
called critical points (extremal points, singularities, etc.),
which are in turn the solutions of a bivariate polynomial
system. In this work, we investigate in the bit complexity
analysis of the recently presented algorithm Bisolve [2] to
isolate the real solutions of a polynomial system

f(x, y) =
∑
i+j≤n

fijx
iyj = 0, g(x, y) =

∑
i+j≤n

gijx
iyj = 0,

(1.1)

1Õ indicates that polylogarithmic factors in τ and n are
omitted.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

where f , g ∈ Z[x, y] are polynomials of magnitude (n, τ),
that is, their total degrees are bounded by n, and their co-
efficients are integers of modulus 2τ or less. Henceforth,
we assume that f and g share no common non-trivial fac-
tor in Z[x, y]\Z which, due to Bézout’s Theorem, is equiv-
alent to the existence of finitely many complex solutions of
(1.1). Bisolve computes a set of disjoint boxes Bk ⊂ R2,
k = 1, . . . ,m, such that the union of all Bk contains

VR := {(x, y) ∈ R2|f(x, y) = g(x, y) = 0},

the set of all real solutions of (1.1), and each Bk is iso-
lating (i.e. each Bk contains exactly one solution). We

show that Bisolve demands for Õ(n8 +n7τ) bit operations,

thus improving the previous record bound Õ(n12 + n10τ2)
from [6] by four magnitudes. In comparison to [6], our anal-
ysis uses two recently presented asymptotically fast algo-
rithms for isolating [18] and refining [11] the real roots of
a univariate polynomial. In comparison to the much more
involved algorithms from A. Schönhage [20] and V. Pan [15],
which achieve comparable complexity bounds, the recently
presented algorithms are very practical, a crucial property
for our principle object to provide methods which are effi-
cient in practice as well as in theory.

We would also like to stress the fact that the obtained
complexity result for Bisolve is not only due to the use of
asymptotically fast methods to isolate and refine the roots
of a univariate polynomial, but rather due to the effective-
ness of the novel inclusion predicate which is used in the
validation step (or lifting step) of Bisolve in order to cer-
tify or to discard candidate solutions. In fact, we consider
the achieved improvement in the projection step to be incre-
mental2 whereas the non-trivial analysis of the lifting step,
and thus of the novel inclusion predicate, constitutes the
main contribution of this paper. As a byproduct, which
may be of some independent interest, our analysis yields an
upper bound for Σ(F) :=

∑
z:F (z)=0 log sep(z, F)−1 which

generalizes the well-known bounds for arbitrary square-free
polynomials F ∈ Z[x] to the general case.3

The lifting step in Bisolve which is based on a homotopy
argument is completely different from previous approaches
which rely on the evaluation of signed remainder sequences
(SRs) to identify the common roots of f(α, y) and g(α, y),

2The results from [18, 11] can certainly also be applied to
previous elimination methods in order to improve the com-
plexity results for the projection step.
3The sum is taken over all complex roots z of F (counted
with multiplicity), where sep(z, F) denotes the separation
(i.e. the minimal distance of z to a root z′ 6= z of F) of z.

with α being the projection of a solution onto the x-axis.
The cost of computing SRs often becomes dominating in
practice. Instead, Bisolve completely avoids such compu-
tations and, as confirmed by the experiments in [2], outper-
forms other state of the art approaches such as Lgp [5] or
Maple’s Isolate by large factors. This shows that the effi-
ciency of our algorithm in theory as proven in the present
paper is not just the product of purely theoretical manipu-
lations with the single goal to achieve the best asymptotic
complexity disregarding many aspects of practical value.

Related work. An early result on the complexity analysis
appears in [9], where the closely related problem of comput-
ing the topology of an algebraic curve is considered. The
authors analyze the algorithm Top and derive a complex-
ity bound of Õ(N14) bit operations, with N = max(n, τ).
Another work [6] discusses three methods to solve a bivari-
ate polynomial system. All of them are based on the com-
putation of signed remainder sequences. The first method,
Grid, projects the solutions onto orthogonal axes and, then,
matches them by means of a Sign at procedure which com-
putes the signs of a subresultant sequence. The complex-
ity of Grid is bounded by Õ(N14) bit operations, where
the overall cost is dominated by that of the Sign at oper-
ations. It should be noted that, despite the fact that Bi-
solve follows the same algorithmic idea as Grid (i.e. to
project onto the x- and y-axes and to choose the right so-
lutions from the induced candidate set), the final validation
steps of the two methods are completely different. The sec-
ond approach called M rur assumes that the system is in
generic position (i.e. no two solutions share a common x-
coordinate). It is based on the computation of a rational
univariate representation (RUR) and achieves a bit com-

plexity of Õ(n10(n2 + τ2)) = Õ(N12). The third approach,
G rur, achieves the same bit complexity as M rur but re-
lies on computing Hα ∈ Z(α)[y], the greatest common divi-
sor of the square-free parts of f(α, y) and g(α, y), where α
is a projected solution of the system. It seems that using
asymptotically fast algorithms for the tasks of isolating and
refining the roots of a polynomial also leads to a consider-
able improvement of the overall complexity of the algorithms
M rur (only in a sheared system) and G rur. However,
since only the bound for the projection step improves, the
so obtained bounds for the overall bit complexity are con-
siderably weaker (at least two magnitudes) than the bound
achieved by Bisolve. For instance, the computational com-
plexity of the final steps (e.g. the sign evaluations of Hα at
candidate intervals) of M rur and G rur is at least by a
factor n2 larger. In addition, the analysis of the lifting step
in G rur is based on the study [21] of a modular GCD al-
gorithm over an extension field. Besides the fact that we do
not consider the computation of the polynomials Hα to be
very practical, we remark that [21] only provides a bound
on the expected number of bit operations; see Section 3.2
in [21]. In his dissertation, M. Kerber describes random-
ized algorithms to analyze the topology of a single algebraic
curve and to compute arrangements of such curves. The
algorithm also uses SRs and applies a coordinate transfor-
mation to ensure generic position. A detailed analysis of the
“curve-pair analysis” which solves the subproblem of finding
the solutions of a bivariate system shows that the corre-
sponding complexity is bounded by an expected number of
Õ(n10(n + τ)2) bit operations; see [10, Section 3.3.4]. Re-

cent work [12] improves the latter analysis for the task of
computing the topology of a single algebraic curve. As a re-
sult, the topology of a single curve can be deterministically
computed using Õ(n8τ(n+ τ)) bit operations.

Outline. Section 2 introduces some notations which are used
throughout the argument. In Section 3, we briefly review
the algorithm Bisolve. Here, we omit some technical de-
tails and filtering techniques to keep the presentation simple.
The complexity analysis is given in Section 4. We analyze
the three main steps of the algorithm separately, and then
combine the results yielding the overall complexity. Finally,
in Section 5, we give some concluding remarks.

2. SETTING
We express the input polynomials f and g in (1.1) as uni-

variate polynomials in x and y of degrees nx and ny, respec-
tively:

f(x, y) =

nx∑
i=0

f
(x)
i (y)xi =

ny∑
i=0

f
(y)
i (x)yi,

g(x, y) =

nx∑
i=0

g
(x)
i (y)xi =

ny∑
i=0

g
(y)
i (x)yi,

where f
(y)
i , g

(y)
i ∈ Z[x], and f

(x)
i , g

(x)
i ∈ Z[y]. Throughout

the paper, it is assumed that nx, ny ≤ n. We denote the
Sylvester matrix associated with the polynomials f and g

by S(y) = S(y)(f, g). Its entries are the coefficients {f (y)
i }

and {g(y)
i }; see [8, p. 286] for the definition. The resultant

R(y)(x) = res(f, g; y) ∈ Z[x] of f and g with respect to y is

the determinant of S(y). By analogy, R(x)(y) = res(f, g;x) ∈
Z[y] defines the resultant with respect to x and S(x)(f, g) the

associated Sylvester’s matrix with entries {f (x)
i } and {g(x)

i }.
If this causes no ambiguity, we also write R omitting the
variable index and by R∗ the square-free part of R.

For a (not necessarily square-free) polynomial F (x) =∑n
i=0 Fix

i ∈ R[x] of degree n := deg(F), lcf(F) := Fn de-
notes the leading coefficient of F . Let z1 . . . zm ∈ C be
the distinct roots of F , then mult(zi, F) denotes the mul-
tiplicity of the root zi and sepi := sep(zi, F) the separa-
tion of zi (i.e. the minimal distance of zi to any zj 6= zi).
The separation sep(F) of F is the minimum of all sepi,
Σ∗(F) :=

∑m
i=1 log sep−1

i , and Σ(F) :=
∑n
i=1 log sep−1

i =∑m
i=1 mult(zi, F) · log sep−1

i . Finally, we denote Γ(F) :=
maxi |zi| the maximal absolute value of all zi, andM(F) :=

| lcf(F)|
∏k
i=0 max{1, |zi|} the Mahler measure of F .

For an interval I = (a, b) ⊂ R, wI := b − a denotes the
width, mI := (a + b)/2 the center and rI := (b − a)/2 the
radius of I. A disc in C is denoted by ∆ := ∆r(m), where
m ∈ C defines the center of ∆ and r ∈ R+ its radius.

3. REVIEW OF THE ALGORITHM
In this section, we briefly review the algorithm Bisolve

to make the paper self-contained; for further details and fil-
tering techniques used in the actual realization, we refer the
interested reader to [2]. At the highest level, Bisolve com-
prises three subroutines which we consider separately:

Project: We first project the complex solutions of (1.1)

onto the x- and y-axes. That is, we consider the two sets:

V
(x)
C := {x ∈ C|∃y ∈ C ∧ f(x, y) = g(x, y) = 0},

V
(y)
C := {y ∈ C|∃x ∈ C ∧ f(x, y) = g(x, y) = 0}

and compute their restrictions V
(x)
R := V

(x)
C ∩R and V

(y)
R :=

V
(y)
C ∩ R to the real values. The real solutions VR of (1.1)

are then contained in the product

C := V
(x)
R × V (y)

R ⊂ R2, (3.1)

which we denote the set of candidate solutions for (1.1). For

computing V
(x)
R and V

(y)
R , we first compute the resultants

R(y) and R(x), respectively, and extract the square-free part
R∗ of either polynomial (R = R(y) or R = R(x) for short).
Then, we isolate the real roots αi of R∗ using the algorithm
Newdsc from [18]. Newdsc is a subdivision approach based
on the combination of Descartes’ Rule of Signs and Newton
iteration. With respect to bit complexity, it achieves the
best bound that is so far known for this problem; see also
[15] for an overview of asymptotically fast numerical algo-
rithms to isolate all complex roots. Yet, in contrast to the
latter mentioned asymptotically fast methods, Newdsc con-
centrates on the real roots only and is much easier to access
and to implement.

Separate: In this step, the real roots of R are further sep-
arated from the complex ones. That is, for each real root α,
we refine a corresponding isolating interval I := I(α) until
the disc ∆8rI (mI) contains no root of R except α. In or-
der to guarantee the latter property, we refine I until the
following inequality holds (see [2, Thm. 2] for a proof):

|(R∗)′(mI)| −
3

2

∑
k≥2

∣∣∣∣ (R∗)(k)(mI)

k!

∣∣∣∣ (8rI)k > 0. (3.2)

In the next step, we compute

LB(α) := 2−2 degR|R(mI − 2rI)|, (3.3)

which constitutes a lower bound for |R(x)| on the boundary
∂∆(α) of ∆(α) := ∆2rI (mI), that is, |R(x)| > LB(α) for all
x ∈ ∂∆(α); see [2, Thm. 3.2] for a proof.

Finally, for each real root α of R(y) (and β of R(x)), we
have isolating intervals I(α) (and I(β)) and isolating discs
∆(α) = ∆2rI(α)

(mI(α)) (and ∆(β)). Hence, each real solu-

tion of the system (1.1) is contained in a polydisc ∆(α, β) :=
∆(α)×∆(β) ⊂ C2, and each of these polydiscs contains at
most one solution. In addition, for each point (x, y) on the

boundary of a polydisc ∆(α, β), we have |R(y)(x)| > LB(α)

or |R(x)(y)| > LB(β).

Validate: The goal of this final stage is to determine all
candidates (α, β) ∈ C which are actually solutions of (1.1)
and to exclude the remaining ones. Again, in order to fa-
cilitate the complexity analysis, we assume that the actual
solutions are chosen exclusively based on the inclusion test
outlined below. We remark that the efficiency of the actual
implementation is further due to a series of filtering tech-
niques to rapidly exclude the majority of candidates. This,
for instance, includes an interval Descartes algorithm [7] to
approximate the roots of f(α, y) and g(α, y).

In Separate, we have already computed lower bounds
LB(α) and LB(β) for the values of |R(y)| and |R(x)| at the

boundaries of ∆(α) and ∆(β), respectively. We now (con-

ceptually) rewrite R(y) in terms of cofactors u(y) and v(y)

(see [8, p. 287] for more details):

R(y)(x) = u(y)(x, y)f(x, y) + v(y)(x, y)g(x, y), (3.4)

where u(y) and v(y) are determinants of “Sylvester-like” ma-
trices U (y) and V (y). These matrices are obtained from the
matrix S(y)(f, g) by replacing the last column with vectors
(yny−1 . . . y 1 0 . . . 0)T and (0 . . . 0 ymy−1 . . . y 1)T of size
ny+my, respectively. Now, without explicitly computing the
cofactors (which are typically very large expressions), we de-

termine upper bounds UB(α, β, u(y)) and UB(α, β, v(y)) for

|u(y)| and |v(y)| on ∆(α, β), respectively. This is achieved

by bounding the absolute values of the entries in U (y) and
V (y) and, then, applying Hadamard’s inequality to U (y) and
V (y). Cofactor polynomials u(x), v(x) and respective upper
bounds UB(α, β, u(x)), UB(α, β, v(x)) are defined in an anal-

ogous way for the resultant polynomial R(x). The inclusion
test based on a homotopy argument is now formulated as
follows (see [2, Thm. 4] for a proof):

Theorem 1 If there exists a ξ := (x0, y0) ∈ ∆(α, β) with

UB(α,β, u(y)) · |f(ξ)|+ UB(α, β, v(y)) · |g(ξ)| < LB(α),

(3.5)

UB(α,β, u(x)) · |f(ξ)|+ UB(α, β, v(x)) · |g(ξ)| < LB(β),

(3.6)

then ∆(α, β) contains a solution of (1.1), and f(α, β) = 0.2

The candidate solutions (α, β) ∈ C are now treated as fol-
lows: Let B(α, β) = I(α) × I(β) ⊂ R2 be the correspond-
ing candidate box. Each candidate box is then refined un-
til we can ensure that f(α, β) 6= 0 or g(α, β) 6= 0 (using
interval arithmetic on B(α, β)), or, for an arbitrary point
(x0, y0) ∈ B(α, β), the inequalities (3.5) and (3.6) are ful-
filled. In the latter case, Theorem 1 guarantees that (α, β) is
a solution of (1.1). We refer to Section 4.3.2 for the details
of the evaluation using interval arithmetic.

4. COMPLEXITY ANALYSIS
Throughout the analysis, we assume that the multiplica-

tion of two integers is always done in asymptotically fast way.
In other words, the bit complexity to multiply two k-bit in-
tegers is assumed to be M(k) = O(k log k log log k) = Õ(k).

4.1 Project

For computing the resultant R = R(x) (or R = R(y)),
we use an asymptotically fast subresultant algorithm based
on Half-GCD computation from [16]. Thus, both resultant

computations need Õ(n4τ) bit operations, and the resulting
polynomials have magnitude

(n2,O(n(logn+ τ))).

Next, we compute R/ gcd(R,R′) to extract the square-free
part R∗ of R. According to [13, 16], this operation demands

for Õ(n5(τ + logn)) bit operations, and R∗ is of magnitude

(n2,O(n(n+ τ))). (4.1)

Finally, the real roots of R∗ are isolated using Newdsc
as outlined in Section 3. Given a square-free polynomial

F ∈ Z[x] of magnitude (N,µ) and an integer L ∈ N, we can
compute isolating intervals (for all real roots) of width 2−L

using no more than Õ(N3µ+N2L) bit operations; see [18,
Theorem 10]. Hence, the cost for the considered isolation

step is bounded by Õ(n8 + n7τ). We remark that the same
complexity bound can be achieved when using an asymp-
totically fast numerical solver (e.g. [15]) to approximate all
complex roots of R∗.

4.2 Separate

Before we start with the actual analysis of Separate,
we provide an upper bound for Σ(F) =

∑
z log sep(z, F)−1,

where F denotes an arbitrary (not necessarily square-free)
polynomial F of magnitude (N,µ), and the sum is taken over
all roots of F counted with multiplicity. In the case where F
is square-free, we have Σ(F) = Õ(Nµ); e.g. see [17, Lemma
19] or [19]. However, to the best of our knowledge, there
exists no comparable bound in the literature which applies to
polynomials F with multiple roots. The following Theorem
provides such a bound which may be of independent interest.

Theorem 2 Let F ∈ Z[x] be a polynomial of magnitude
(N,µ). We denote z1, . . . , zd the distinct complex roots of
F and si := mult(zi, F) the multiplicity of zi. Then, for
arbitrary non-negative integers mi, with mi ≤ si, we have

d∑
i=1

mi log sep(zi, F)−1 = Õ(N2 +Nµ).
2

Proof. We consider the factorization of F (over Z) into
square-free and pair-wise coprime factors:

F (x) =
∏k

i=1
Qi(x)si , di := deg(Qi) ≥ 1,

such that the polynomials Qi(x) and F (x)/Qi(x)si are co-

prime, and N =
∑k
i=1 disi. We further denote F ∗ the

square-free part of F and d := deg(F ∗) =
∑k
i=1 di its degree.

Then, for arbitrary roots α and β of F ∗, it holds that

|(F ∗)′(α)| = | lcf(F ∗)| · |α− β|
∏

γ 6=α,β:F∗(γ)=0

|γ − α|

≤ | lcf(F ∗)| · |α− β|
∏

γ 6=α,β:F∗(γ)=0

2 max(1, |α|, |γ|)

≤ 2d−2|α− β|max(1, |α|)d−3M(F ∗)

since M(F ∗) = | lcf(F ∗)| ·
∏
z:F∗(z)=0 max(1, |z|). Suppose,

w.l.o.g., that α is a root of Qi and β is a root of F ∗ closest
to α. Then, according to the above inequality, we have

sep(α, F) = |α− β| ≥ |(F ∗)′(α)|
2d−2 max(1, |α|)d−3M(F ∗)

We now apply this inequality to the product over all sep(αj , F),
j = 1, . . . , di, where α1, . . . , αdi denote the roots of Qi:

di∏
j=1

sep(αj , F) ≥ 2(2−d)diM(Qi)
3−dM(F ∗)−di

di∏
j=1

|(F ∗)′(αj)|

= 2(2−d)diM(Qi)
3−dM(F ∗)−di

di∏
j=1

|(Qi)′(αj) ·
F ∗

Qi
(αj)|

(4.2)

since

(F ∗)′(αj) = Qi(αj)︸ ︷︷ ︸
=0

·
(
F ∗

Qi

)′
(αj) + (Qi)

′(αj) ·
F ∗

Qi
(αj)

In addition, we have

di∏
j=1

|Q′i(αj)| = | lcf(Qi)
2−di Disc(Qi)| ≥ | lcf(Qi)

2−di |, and

di∏
j=1

|F
∗

Qi
(αj)| = | lcf(Qi)

di−d res(Qi,
F ∗

Qi
)| ≥ | lcf(Qi)

di−d|

since Disc(Qi) and res(Qi,
F∗

Qi
) are non-zero integers. Ap-

plying the latter two inequalities to (4.2) now yields:

di∏
j=1

sep(αj , F) ≥2(2−d)diM(Qi)
3−dM(F ∗)−di | lcf(Qi)

2−d|

Finally, we consider the product of the separations of all
roots to the respective powers si:

k∏
i=1

di∏
j=1

sep(αj , F)si ≥
k∏
i=1

2(2−d)disiM(Qi)
(3−d)si

· M(F ∗)−disi ·
k∏
i=1

| lcf(Qi)|−si

= 2(2−d)NM(F)3−dM(F ∗)−N | lcf(F)|−1 = 2−Õ(N2+Nµ)

where we used that
∏k
i=1M(Qi)

si = M(F) by the multi-
plicativity of the Mahler measure and M(F ∗) ≤ M(F) =

2Õ(µ). Hence, in the case where mi = si for all i = 1, . . . , d,
the claim eventually follows by taking the logarithm on both
sides. Since for each root z of F , sep(z, F) is upper bounded
by two times the maximal absolute value of all roots of F , we
have sep(z, F) < 2µ+2 according to the Cauchy root bound
(see e.g. [23]). Thus, the claim also follows for arbitrary
integers mi with 0 ≤ mi ≤ si.

We now turn to the analysis of Separate: In the projec-
tion step, we have already determined intervals I := I(α)
which isolate the real roots α of R∗. Now, each I has to be
refined until the inequality (3.2) holds. This ensures that
∆8rI (mI) isolates α ∈ I from all other roots of R∗, and
thus the value LB(α) as defined in (3.3) constitutes a lower
bound for |R(α)| on the boundary of ∆(α) = ∆2rI (mI). In
each iteration, we approximate α to a certain number L of
bits after the binary point. Then, we check whether the in-
equality (3.2) holds. If the latter inequality does not hold,
we double L and proceed. According to [19, Lemma 2], we
have

|(R∗)′(z)− 3

2

∑
k≥2

∣∣∣∣ (R∗)(k)(mI)

k!

∣∣∣∣ rk > 0

if r < sep(zi, R
∗)/(4n4) ≤ sep(zi, R

∗)/(4 deg(R∗)2).4 It fol-
lows that (3.2) holds for sure if rI < sep(zi, R

∗)/(32n4) =
sep(zi, R)/(32n4), thus we have to approximate α to at most
2 log(32n4/ sep(α,R)) = O(log(sep(α,R)−1 + log n) many

4In [19, Lemma 2], we considered a constant
√

2 instead of
3/2. However, the same proof as given for [19, Lemma 2]
also applies to the “3/2-case”.

bits after the binary point. Due to Theorem 2, log sep(α,R)−1

is bounded by Õ(n4 + n3τ), and thus α has to be approxi-

mated to at most Õ(n4+n3τ) many bits. For all real roots of

R, the latter computation demands for Õ(n4(n4 + n3τ)) =

Õ(n8 + n7τ) many bit operations according to [18, Theo-
rem 10] (or alternatively [15]). It remains to estimate the
cost for evaluating the left side of (3.2). In order to do so,
we first compute the Taylor expansion of (R∗)′ at x = mI

(i.e. (R∗)′(x + mI)). Since mI is a dyadic number that is
representable by O(n2+nτ+log sep(α,R)−1) many bits, the

cost for this computation is bounded by Õ(deg(R∗)2(n2 +

nτ + log sep(α,R)−1)) = Õ(n4(n2 + nτ + log sep(α,R)−1)),
where we use asymptotically fast Taylor shift [22]. Then,
x is replaced by 8rI yielding (R∗)′(mI + 8rIx). This step
constitutes a shift of the k-th (dyadic) coefficient of f(mI +
x) by k log(8rI) many bits. The resulting polynomial has
dyadic coefficients of bitsize O(n2 +nτ+n2 log sep(α,R)−1),
hence the final evaluation demands for O(n2(n2 + nτ +
n2 log sep(α,R)−1)) many bit operations. Summing up over
all real roots α of R thus yields the bound∑

α

Õ(n4(n2 + nτ + log sep(α,R)−1)) = Õ(n8 + n7τ)

for the overall cost since there at most n2 many real roots
and Σ(R∗) = Õ(n4 + n3τ).

It remains to consider the cost for the computation of
LB(α) = 2−2 degR|R(mI − 2rI)|: We have to evaluate a
polynomial of magnitude (n2, n(n+ τ)) at a dyadic number
of bitsize O(n2 + nτ + log sep(α)−1). Namely, the binary
representation of mI needs at most O(n(n+ τ)) bits before
and O(log r−1

I) = O(logn + log sep(α)−1) bits after the bi-
nary point. Hence, for computing LB(α) for all real roots
α, we need a number of bit operations bounded by∑

α

Õ(n4(n2 + nτ + log sep(α)−1)) = Õ(n8 + n7τ).

4.3 Validate

4.3.1 Estimating lower and upper bounds
In the final stage, Validate, we have a set of candidate

solutions C and corresponding disjoint polydiscs ∆(α, β) :=
∆(α)×∆(β) ⊂ C2. Each of the polydiscs contains at most
one solution of (1.1), that is, (α, β). The actual solutions
of the system are chosen from C based on the inclusion test
from Theorem 1, while the other candidates are excluded
using interval arithmetic. We split the complexity analysis
of Validate into two parts: First, we estimate LB(α), our
lower bound for |R| on the boundary of ∆(α), as well as the

upper bounds for the values of |u(y)| and |v(y)| on ∆(α, β) as
needed by the inclusion predicate. This eventually yields a
bound on how good each candidate (α, β) must be approxi-
mated in order to certify it as a solution or to discard it.

Estimating the lower bounds. We first compute lower
and upper bounds for LB(α) = 2−2 degR|R(mI−2rI)| which,
in turn, constitutes a lower bound for the values of |R(z)|
on the boundary of the disc ∆(α) := ∆2rI (mI), where I :=
I(α) is the isolating interval for α obtained in the separa-
tion phase; then, similar bounds also apply to LB(β), the

lower bound for |R(x)| on the boundary of ∆(β), see Sec-
tion 3 (Separate).

In the analysis of Separate, we have already argued that
approximating α to an error of sep(α,R)/(32n4) or less guar-
antees that the inequality (3.2) holds, and thus the disc
∆8rI (mI) isolates α. In each iteration of the refinement,
we double the number of bits to which α is approximated
and check whether (3.2) holds. Hence, it follows that the so-
obtained interval I(α) has width wI > (sep(α,R)/(32n4))2.
In addition, since the disc ∆8rI (mI) isolates α, we have
wI < sep(α,R)/7. We fix these bounds for wI :

sep(α,R)2

1024n4
< wI ≤

sep(α,R)

7
. (4.3)

Let us now consider the factorization of R into linear factors,
that is, R(z) = lcf(R)·

∏d
i=1(z−zi)si , where z1, . . . , d denote

the distinct complex roots of R and si the corresponding
multiplicities. Then, with α = zj , we have

sep(zj , R)

4
> |(mI − 2rI)− zj | >

sep(zj , R)2

2048n8

and
2|zj − zi| > |(mI − 2rI)− zi| >

|zj − zi|
2

for all i 6= j. Hence, it follows that

LB(α) = LB(zj) = 2−2 degR · |R(mI − 2rI)|

= 2−2 degR| lcf(R)| · |(mI − 2rI)− zj |sj
∏
i6=j

|(mI − 2rI)− zi|si

< 2−2 degR| lcf(R)| · (sep(zj , R)/4)sj
∏
i 6=j

|2(zj − zi)|si

< sep(zj , R)sj · | lcf(R)| ·
∏
i6=j

|zj − zi|si < sep(zj , R)sj
|R(sj)(zj)|

sj !

= 2O(n2+nτ) max(1, |zj |)n
2

sep(zj , R)sj

= 2O(sj(n
2+nτ)) max(1, |zj |)n

2

(4.4)

since R(sj)/(sj !) ∈ Z[x] has magnitude (n2, n(n + τ)), and

sep(zj , R) < 2 maxi |zi| = 2O(n(n+τ)) according to Cauchy’s
Bound. We can also compute a lower bound for LB(α):

LB(α) > 2−2 degR| lcf(R)| ·
(

sep(zj , R)2

2048n8

)sj∏
i 6=j

(
|zj − zi|

2

)si
>

2−3 degR

(2048n8)sj
· | lcf(R)| sep(zj , R)2sj

∏
i6=j

|zj − zi|si

(4.5)

Since we are mainly interested in a bound for the product
of all LB(α), we first consider the product

Π :=

d∏
j=1

 2−3 degR

(2048n8)sj
· | lcf(R)| sep(zj , R)2sj

∏
i6=j

|zj − zi|si

of the bound in (4.5) over all j = 1, . . . , d. Since
∑
j sj =

d ≤ degR ≤ n2, it follows that
∏d
j=1

2−3 degR

(2048n8)
sj = 2−O(n4).

For the product of the remaining factors, we first write
R =

∏s0
s=1 Q

s
s with square-free, pairwise coprime Qs ∈ Z[x].

Since R(s)/s! has integer coefficients, we have

1 ≤ | res(Qs,
R(s)

s!
)| = | lcf(Qs)|deg(R)−s

∏
z:Qs(z)=0

R(s)(z),

and thus

d∏
j=1

| lcf(R)| sep(zj , R)2sj
∏
i 6=j

|zj − zi|si

> | lcf(R)|d2−2Σ(R)
∏
j

∏
i6=j

|zi − zj |sj = 2−2Σ(R)
∏
j

|R(sj)(zi)|
sj !

= 2−2Σ(R)
s0∏
s=1

| lcf(Qs)|s−deg(R)| res(Qs,
R(s)

s!
)|

> 2−2Σ(R)| lcf(R)| · | lcf(R∗)|− deg(R) = 2−Õ(n4+n3τ),

where we used that | lcf(R)| ≤ 2O(n(logn+τ)), degR ≤ n2,

and Σ(R) = Õ(n4 + n3τ). Hence, Π is lower bounded by

2−Õ(n4+n3τ). Similar to the computation in (4.4), we can
also determine an upper bound for the j-th factor in Π.

Namely, we have 2−3 degR

(2048n8)
sj < 1, sep(zj , R)sj = 2O(sjn(logn+τ))

and

lcf(R)
∏
i 6=j

|zj−zi|si =
|R(sj)(zj)|

sj !
< 2O(n(logn+τ)) max(1, |zj |)n

2

.

Thus, for an arbitrary subset J ⊂ {1, . . . , d}, the partial
product

Π′ :=
∏
j∈J

 2−3 degR

(2048n8)sj
· | lcf(R)| sep(zj , R)2sj

∏
i 6=j

|zj − zi|si

is smaller than 2O(n4+n3τ)∏
j∈J max(1, |zj |)n = 2O(n4+n3τ)

since
∏
j∈J max(1, |zj |)n ≤ M(R) = 2O(n(logn+τ)). Finally,

since the product over all LB(α) is lower bounded by a par-

tial product of Π, it follows that
∏
α LB(α) = 2−Õ(n4+n3τ).

The same argument further shows that each LB(α) is lower

bounded by 2−Õ(n4+n3τ) as well.

Estimating the upper bounds. For computing the upper
bounds UB(α, β, u(y)) and UB(α, β, v(y)) for |u(y)| and |v(y)|
on ∆(α, β), we apply Hadamard’s inequality to the matrices

U (y) and V (y), see Section 3.
In the actual realization, we use interval arithmetic for

a box in C2 which contains ∆(α, β) in order to estimate
the absolute values of the respective matrix entries Uij and
Vij , and then apply Hadamard’s bound. For the complex-
ity analysis, we follow a slightly different but even simpler
approach: From the construction of ∆(α, β), the disc ∆(α)

has radius less than sep(α,R(y))/4, and ∆(β) has radius less

than sep(β,R(x))/4 according to (4.3). Hence, the latter two
radii are upper bounded by 2 max{1, |α|} and 2 max{1, |β|},
respectively. Recall that the matrix U (y) is of the form:

U (y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f
(y)
my f

(y)
my−1 . . . f

(y)
0 0 . . . yny−1

...
. . .

. . .
. . .

...

0 . . . 0 f
(y)
my f

(y)
my−1 . . . 1

g
(y)
ny g

(y)
ny−1 . . . g

(y)
0 0 . . . 0

...
. . .

. . .
. . .

...

0 . . . 0 g
(y)
ny g

(y)
ny−1 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where the polynomials f
(y)
i (x) and g

(y)
i (x) are of magnitude

(n, τ) (see Section 2). Thus, for each point (x̂, ŷ) ∈ ∆(α, β),

the following inequality holds:

|f (y)
i (x̂)| ≤ (n+ 1) · 2τ (2 max(1, |α|))n,

and a similar bound applies to |g(y)
i (x̂)| as well. For the

last column of U (y), we have: (ŷ)ny−1 ≤ (2 max(1, |β|))n,

and thus |U (y)
ij (x̂, ŷ)| ≤ (n + 1) · 2τ+n max{1, |α|, |β|}n. By

Hadamard’s inequality, |u(y)| = | det(U (y))| <
∏
i |U

(y)
i |2

where |U (y)
i |2 is the 2-norm of the i-th row vector of U (y).

Hence, when using the latter bounds for the entries of U (y),
we obtain an upper bound UB(α, β, u(y)) for |u(y)| on the

polydisc ∆(α, β), such that UB(α, β, u(y)) ≥ 1 and

log |UB(α, β, u(y))| = O(n(τ + n) + n2 log max(1, |α|, |β|))
= O(n4 + n3τ).

(4.6)

Again, we are looking for amortization effects: Taking the
product of the latter bounds over all candidates (α, β) yields:∑

α,β

logUB(α, β, u(y))

=
∑
α,β

O(n2 + nτ) +
∑
α,β

n2 log max(1, |α|, |β|)

≤ O(n6 + n5τ) + n2
∑
β

∑
α

log max(1, |α|)

+ n2
∑
α

∑
β

log max(1, |β|))

≤ O(n6 + n5τ) + n2 logM(R(y)) + n2 logM(R(x))

= Õ(n6 + n5τ)

(4.7)

since there are at most n2 many α and β. A completely sim-
ilar argument shows that the bounds in (4.6) and (4.7) are

also valid for UB(α, β, v(y)), UB(α, β, u(x)) and UB(α, β, v(x)).

4.3.2 The inclusion test
For a given candidate (α, β) ∈ C and B := B(α, β) =

I(α)×I(β) ⊂ R2 the corresponding candidate box, we define

δ(B) :=
min(LB(α), LB(β))

maxw∈{u(x),u(y),v(x),v(y)} UB(α, β,w)
.

From the bounds that we have computed in the previous
section, we conclude that log δ(B)−1 = Õ(n4 + n3τ). Ac-
cording to Theorem 1, B is isolating for a solution of (1.1)
if and only if there exists an (x0, y0) ∈ B with

|f(x0, y0)|+ |g(x0, y0)| < δ(B). (4.8)

Hence, by contraposition, we must have

|f(x0, y0)|+ |g(x0, y0)| ≥ δ(B) (4.9)

for all (x0, y0) ∈ B if B contains no solution. In order to
certify or discard (α, β) as a solution of the system, we
evaluate f and g on B using interval arithmetic with preci-
sion ρ := ρ(B) = d− log se, where s := max(wI(α), wI(β))
is the size of B. As a result of this evaluation, we ob-
tain intervals B(f(α, β), ρ) and B(g(α, β), ρ) which contain
f(B) and g(B), respectively. The above consideration shows
that it suffices to use a precision ρ such that both intervals
B(f(α, β), ρ) and B(g(α, β), ρ) have width less than δ(B)/2.

Namely, if this happens, then either one of the intervals does
not contain zero or we must have |f(x0, y0)| + |g(x0, y0)| <
δ(B) for all (x0, y0) ∈ B. In the first case, we can discard
(α, β), whereas, in the second case, we can guarantee that
(α, β) is a solution.

The width of B(f(α, β), ρ) (and B(g(α, β), ρ)) is directly
related to the absolute error induced by the interval arith-
metic. In order to bound this error, we briefly outline how
the interval arithmetic is performed and refer the reader
to [11, Section 4] for more details; cf. [14, Theorem 18] for
an alternative approach when using floating point evaluation
instead. For a precision ρ ∈ N and x ∈ R, we define:

down(x, ρ) = {k · 2−ρ ∈ R : k = bx · 2ρc},
up(x, ρ) = {k · 2−ρ ∈ R : k = dx · 2ρe}.

(4.10)

That is, x is included in the interval B(x, ρ) := [down(x, ρ),
up(x, ρ)]. For simplicity, we omit the precision parameter ρ
and write up(x) or B(x). Arithmetic operations on approxi-
mate numbers obey the rules of classical interval arithmetic;
for x, y ∈ R, we define:

B(x) + B(y) := [down(x) + down(y), up(x) + up(y)],

B(x)−B(y) := [down(x)− up(y), up(x)− down(y)],

B(x) ·B(y) :=

[
down(min

i,j={1,2}
{Hi(x)Hj(y)}),

up(max
i,j={1,2}

{Hi(x)Hj(y)})
]

with H1(x) = down(x), and H2(x) = up(x). Using these
rules for F ∈ R[x] and x0 ∈ R, B(F (x0), ρ) can be evaluated
using the Horner’s scheme: B(F (x0)) = B(F0) + B(x0) ·
(B(F1)+B(x0) ·(B(F2)+ . . .)). The next lemma provides a
bound on the error that is induced by polynomial evaluation
with precision ρ.

Lemma 1 Let F ∈ R[x] be a polynomial of degree N with
coefficients of absolute value less than 2µ, c ∈ R with |c| ≤
2υ, and ρ ∈ N. Then,

|F (c)−H(F (c), ρ)| ≤ 2−ρ+12µ2Nυ(N + 1)2,

where H = {down, up}. In particular, B(F (c), ρ) has width
2−ρ+2(N+1)22µ+Nυ or less. For a proof, see [11, Lem. 3].2

In particular, this lemma asserts that the absolute error
which results from approximate polynomial evaluation is
linear in 2−ρ and of degree n in the absolute value of the
input. A straight forward computation shows that evalu-
ating f(α, β) with precision ρ induces an absolute error of
less than 2−ρ+1(n+1)22τ max{1, |α|, |β|}n, thus the width of
B(f(α, β), ρ) is bounded by 2−ρ+2(n+1)22τ max(1, |α|n, |β|n).
The same bound also applies to B(g(α, β), ρ).

It follows that our inclusion/exclusion test must succeed
for any precision ρ less than

ρ(B) := log(8(n+ 1)22τ max(1, |α|n, |β|n)δ(B)−1)

because, then, both intervals B(f(α, β), ρ) and B(f(α, β), ρ)
have width less than δ(B)/2. Since we double the working
precision ρ in each step, we eventually succeed for a

ρ < 2ρ(B) = O(logn+ τ + n log max(1, |α|, |β|)− log δ(B))

= Õ(n4 + n3τ).

In addition, we have to refine the isolating intervals I(α)

and I(β) to a width 2−ρ = 2−Õ(n4+n3τ). In our analysis of
Separate, we have already seen that refining the isolating
intervals for all real roots of R(y) (and R(x)) to a width of

2−Õ(n4+n3τ) demands for Õ(n8 +n7τ) many bit operations.
It remains to bound the cost for evaluating B(f(α, β), ρ)

and B(f(α, β), ρ): Since we have to perform O(n2) many
multiplications and additions with dyadic numbers whose
binary representations need O(τ + n log max(1, |α|, |β|) −
δ(B(α, β))) many bits, the latter computation demands for

Õ(n2(τ + n log max(1, |α|, |β|)− ρ(B(α, β)))) (4.11)

many bit operations. Hence, for the bit complexity of the
polynomial evaluations at all (α, β), we obtain the bound∑
α,β

Õ(n2(τ + n log max(1, |α|, |β|)− δ(B(α, β))))

= Õ(n6τ + n3
∑
α,β

log max(1, |α|, |β|)− n2
∑
α,β

δ(B(α, β)))

= Õ(n7 + n6τ − n2
∑
α,β

δ(B(α, β))),

where we use the same argument as in (4.7) to bound the
sum of all log max(1, |α|, |β|). The following computation

further shows that −
∑
α,β log δ(B(α, β)) = Õ(n6 + n5τ):

Using the upper bound (4.4) for LB(α) and LB(β) yields

log(min(LB(α), LB(β)))−1 ≤ logLB(α)−1 + logLB(β)−1

+ 2n2 · log max(1, |α|, |β|) +O((sα + sβ)(n2 + nτ)),

where sα denotes the multiplicity of α as a root of R(y), and
sβ the multiplicity of β as a root of R(x). Hence, the bound

Õ(n6 +n5τ) for the sum over all log(min(LB(α), LB(β)))−1

follows from∑
α,β

logLB(α)−1 + logLB(β)−1 =
∑
β

∑
α

logLB(α)−1+

+
∑
α

∑
β

logLB(β)−1 ≤ −n2(
∑
α

logLB(α) +
∑
β

logLB(β))

= −n2(log
∏
α

LB(α) + log
∏
β

LB(β)) = Õ(n6 + n5τ),

and∑
α,β

2n2 log max(1, |α|, |β|) +O((sα + sβ)(n2 + nτ))

= Õ(n6 + n5τ + (n4 + n3τ) · (
∑
α

sα +
∑
β

sβ)) = Õ(n6 + n5τ).

In addition, the result from (4.7) shows that∑
α,β

log max
w∈{u(x),u(y),v(x),v(y)}

UB(α, β,w)

≤
∑
α,β

logUB(α, β, u(x)) +
∑
α,β

logUB(α, β, u(y))

+
∑
α,β

logUB(α, β, v(x)) +
∑
α,β

logUB(α, β, v(y))

= Õ(n6 + n5τ).

(4.12)

Thus, the claimed bound for −
∑
α,β log δ(B(α, β)) follows

from our definition of δ(B(α, β)).

We conclude that Õ(n8 + n7τ) determines the overall bit
complexity of Bisolve.

5. CONCLUSIONS
We have derived the bound Õ(n8 + n7τ) for the bit com-

plexity of isolating the real solutions of a bivariate poly-
nomial system. To the best of our knowledge, the latter
bound considerably improves upon the best known complex-
ity bounds for this fundamental task. However, it seems that
an even more involved analysis may yield a slight improve-
ment to Õ(n7τ) bit operations. In particular, this would
require to remove the “N2-term” in our bound for Σ(F) as
given in Theorem 2.

The bottleneck in our analysis stems from the fact that
we treat the resultant polynomial R as a general polynomial
of magnitude (n2, n(τ + logn)), thus yielding a worst case

separation of 2−Õ(n4+n3τ) for the roots of R. Hence, as long
as no improvement for the root isolation step is achieved, it
seems to be very difficult to further improve upon the given
bound for solving a bivariate polynomial system when using
an elimination approach. In practice, we never observed
that the roots of the resultant polynomial have such a bad
separation, thus, the question arises whether isolating and
refining the roots of an elimination polynomial is possibly
easier than of a general polynomial of the same magnitude.

A recent exact and complete algorithm [1] uses Bisolve
to compute arrangements of planar algebraic curves. We
consider the presented analysis as a first step to derive cor-
responding complexity results for the arrangement compu-
tation which improve upon the results as given in [10, 12].
Finally, it seems reasonable to extend Bisolve for solving
zero-dimensional polynomial systems with more than two
variables. We aim to formulate such an algorithm and to
analyze its complexity in a similar way as done for Bisolve
in this paper.

6. REFERENCES
[1] E. Berberich, P. Emeliyanenko, A. Kobel, and

M. Sagraloff. Arrangement computation of planar
algebraic curves. In Proceedings of the Workshop on
Symbolic an Numerical Computation (SNC), pages
88–99, 2011.

[2] E. Berberich, P. Emeliyanenko, and M. Sagraloff. An
Elimination Method for Solving Bivariate Polynomial
Systems: Eliminating the Usual Drawbacks. In
ALENEX ’11, pages 35–47. SIAM, 2011.

[3] E. Berberich, M. Kerber, and M. Sagraloff. An
efficient algorithm for the stratification and
triangulation of algebraic surfaces. Computational
Geometry: Theory and Applications, 43:257–278, 2010.
Special issue on SoCG’08.

[4] J. Cheng, S. Lazard, L. Penaranda, M. Pouget,
F. Rouillier, and E. Tsigaridas. On the topology of
planar algebraic curves. In SCG ’09: Proc. of the 25th
Annual Symposium on Computational Geometry,
pages 361–370, New York, NY, USA, 2009. ACM.

[5] J.-S. Cheng, X.-S. Gao, and J. Li. Root isolation for
bivariate polynomial systems with local generic
position method. In ISSAC ’09, pages 103–110, New
York, NY, USA, 2009. ACM.

[6] D. I. Diochnos, I. Z. Emiris, and E. P. Tsigaridas. On
the asymptotic and practical complexity of solving

bivariate systems over the reals. Journal of Symbolic
Computation, 44(7):818–835, 2009.

[7] A. Eigenwillig, L. Kettner, W. Krandick, K. Mehlhorn,
S. Schmitt, and N. Wolpert. A Descartes algorithm for
polynomials with bit-stream coefficients. In CASC ’05,
volume 3718 of LNCS, pages 138–149, 2005.

[8] K. Geddes, S. Czapor, and G. Labahn. Algorithms for
computer algebra. Kluwer Academic Publishers,
Boston/Dordrecht/London, 1992.

[9] L. González-Vega and M. E. Kahoui. An Improved
Upper Complexity Bound for the Topology
Computation of a Real Algebraic Plane Curve.
Journal of Complexity, 12(4):527–544, 1996.

[10] M. Kerber. Geometric Algorithms for Algebraic
Curves and Surfaces. PhD thesis, Universität des
Saarlandes, Saarbrücken, Germany, 2009.

[11] M. Kerber and M. Sagraloff. Efficient real root
approximation. In ISSAC ’11, pages 209–216, 2011.
see http://arxiv.org/abs/1104.1362v1 for an extended
version.

[12] M. Kerber and M. Sagraloff. A worst-case bound for
topology computation of algebraic curves. CoRR,
abs/1104.1510, 2011. to appear in the Journal of
Symbolic Computation.

[13] T. Lickteig and M.-F. Roy. Sylvester-Habicht
Sequences and Fast Cauchy Index Computation.
Journal of Symbolic Computation, 31(3):315–341,
2001.

[14] K. Mehlhorn, R. Osbild, and M. Sagraloff. A general
approach to the analysis of controlled perturbation
algorithms. Comput. Geom., 44(9):507–528, 2011.

[15] V. Y. Pan. Solving a polynomial equation: some
history and recent progress. SIAM Review,
39(2):187–220, 1997.

[16] D. Reischert. Asymptotically fast computation of
subresultants. In ISSAC ’97, pages 233–240, New
York, NY, USA, 1997. ACM.

[17] M. Sagraloff. On the complexity of real root isolation.
CoRR, abs/1011.0344, 2010. submitted.

[18] M. Sagraloff. When newton meets descartes - a simple
and fast algorithm to isolate the real roots of a
polynomial. CoRR, abs/1109.6279, 2011. submitted in
parallel to ISSAC’12, for an online version, see also
http://www.mpi-inf.mpg.de/ msagralo/NEWDSC.pdf.

[19] M. Sagraloff and C. Yap. A simple but exact and
efficient algorithm for complex root isolation. In
ISSAC ’11, pages 353–360, 2011.

[20] A. Schönhage. The fundamental theorem of algebra in
terms of computational complexity, 1982. Manuscript,
Department of Mathematics, University of Tübingen.
Updated 2004.

[21] M. van Hoeij and M. B. Monagan. A modular GCD
algorithm over number fields presented with multiple
extensions. In ISSAC ’02, pages 109–116, 2002.

[22] J. von zur Gathen and J. Gerhard. Fast algorithms for
taylor shifts and certain difference equations. In
ISSAC ’97, pages 40–47, New York, NY, USA, 1997.
ACM.

[23] C. K. Yap. Fundamental Problems in Algorithmic
Algebra. Oxford University Press, 2000.

