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Abstract

We present an exact and complete algorithm to isolate
the real solutions of a zero-dimensional bivariate poly-
nomial system. The proposed algorithm constitutes an
elimination method which improves upon existing ap-
proaches in a number of points. First, the amount of
purely symbolic operations is significantly reduced, that
is, only resultant computation and square-free factoriza-
tion is still needed. Second, our algorithm neither as-
sumes generic position of the input system nor demands
for any change of the coordinate system. The latter is
due to a novel inclusion predicate to certify that a cer-
tain region is isolating for a solution. Our implemen-
tation exploits graphics hardware to expedite the resul-
tant computation. Furthermore, we integrate a num-
ber of filtering techniques to improve the overall perfor-
mance. Efficiency of the proposed method is proven by
a comparison of our implementation with two state-of-
the-art implementations, that is, Lgp and Maple’s Iso-
late. For a series of challenging benchmark instances,
experiments show that our implementation outperforms
both contestants.

1 Introduction

Finding the real solutions of a bivariate polynomial
system is a fundamental problem with numerous
applications in computational geometry, computer
graphics and computer aided geometric design. In
particular, topology and arrangement computations for
algebraic curves [7, 13, 14, 20, 21] crucially rely on the
computation of common intersection points of the given
curves (and also the curves defined by their partial
derivatives). For the design of robust and certified
algorithms, we aim for exact methods to determine
isolating regions for all solutions. Such methods should
be capable of handling any input, that is, even systems
with multiple solutions. The proposed algorithm
Bisolve constitutes such an exact and complete
approach. Its input is a zero-dimensional (i.e., there
exist only finitely many solutions) polynomial system
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f(x, y) = g(x, y) = 0 defined by two bivariate poly-
nomials with integer coefficients. Bisolve computes
disjoint boxes B1, . . . , Bm ⊂ R2 for all real solutions,
where each box Bi contains exactly one solution (i.e.,
Bi is isolating). In addition, the boxes can be refined
to an arbitrary small size.

Main results. Bisolve is a classical elimination
method which follows the same basic idea as the GRID
method from [12] or the INSULATE method from [36]
for computing the topology of an algebraic planar
curve.1 That is, they all consider several projection
directions to derive a set of candidates of possible
solutions and eventually identify those candidates which
are actually solutions.

More precisely, in a first step, we separately elimi-
nate the variables x and y by means of a resultant com-
putation. Then, in the second step, for each possible
candidate (represented as pair of projected solutions in
x- and y-direction), we check whether it actually con-
stitutes a solution of the given system or not. The pro-
posed method comes with a number of improvements
compared to the aforementioned approaches and also to
other existing elimination techniques [3, 13, 25, 29, 30].
First, we tremendously reduced the amount of purely
symbolic computations, namely, our method only de-
mands for resultant and gcd computation of univari-
ate polynomials with integer coefficients. Second, our
implementation profits from a novel approach [16, 17]
to compute resultants exploiting the power of Graphics
Processing Unite (GPUs). We remark that, in compar-
ison to the classical resultant computation on the CPU,
the GPU implementation is typically more than 100-
times faster. Our experiments show that, for the consid-
ered instances, the resultant computation is no longer a
“global” bottleneck of an elimination approach. Third,
the proposed method never uses any kind of a coordi-
nate transformation, even for non-generic input.2 The

1For the analysis of a planar curve C = {(x, y) ∈ R2 : f(x, y) =
0}, it is crucial to find the solutions of f = fy = 0. The method

in [36] uses several projection directions to find these solutions.
2The system f = g = 0 is non-generic if there exist two

solutions sharing a common coordinate.



latter is due to a novel inclusion predicate which com-
bines information from the resultant computation and
a homotopy argument to prove that a certain candidate
box is isolating for a solution. Since we never apply
a change of coordinates, our method particularly prof-
its in the case where f and g are sparse or where we
are only interested in “local” solutions within a given
box. Finally, we integrated a series of additional filter-
ing techniques which allow us to significantly speed up
the computation for many instances.

We implemented our algorithm as a prototypi-
cal package of Cgal [40] and ran our software on
numerous challenging benchmark instances. For com-
parison, we considered two currently state-of-the-art
implementations, that is, Isolate (based on Rs by
Fabrice Rouillier with ideas from [29]) and Lgp by
Xiao-Shan Gao et al. [8], both interface in Maple 13.
Our experiments show that our method is efficient as it
outperforms both contestants for most instances. More
precisely, our method is comparable for all considered
instances and typically between 5 and 10-times faster.
For some instances, we even improve by a factor of 50
and more. Our filters apply to many input systems
and crucially contribute to the overall performance.
We further remark that the gain in performance is
not solely due to the resultant computation on the
GPU but rather due to the combination of the sparse
use of purely symbolic computations and efficient
(approximate) subroutines. We prove the latter fact
by providing running times with and without fast
GPU-resultant computation.

Related Work. Since polynomial root solving is such
an important problem in several fields, plenty of distinct
approaches exist and many textbooks are dedicated to
this subject. We mainly distinguish between two kinds
of methods.

The first comprises non-certified or non-complete
methods which give, in contrast to our goal here, no
guarantee on correctness or termination (e.g., if multiple
roots exists). Representatives of this category are
numerical (e.g., homotopy methods [37]) or subdivision
methods3 (e.g., [2, 6, 27]). A major strength of these
methods is that they are very efficient for most instances
due to their use of approximate computations such as
provided by IntBis, ALIAS, IntLab or MPFI.

The second category consists of certified and com-
plete methods to which ours is to be added. So far, only
elimination methods based on (sparse) resultants, ratio-
nal univariate representation, Groebner bases or eigen-

3Subdivision methods can be made certifying and complete
when considering worst case separation bounds for the solutions,

an approach which has not shown effective in practice so far.

values have proven to be reasonably efficient represen-
tatives of this category; see, for instance, [11, 28, 39, 41]
for introductions to such symbolic approaches. Com-
mon to all these methods is that they combine a pro-
jection and a lifting step similar to the proposed ap-
proach. Recent exact and complete implementations
for computing the topology of algebraic curves and sur-
faces [5, 7, 14, 20, 21, 36] also make use of such elim-
ination techniques. However, already this low dimen-
sional application shows the main drawback of elimi-
nation methods, that is, they tremendously suffer from
costly symbolic computations. Furthermore, the given
system might be in non-generic position which makes
the lifting step non-trivial. In such “hard situations”,
the existing approaches perform a coordinate transfor-
mation (or project in generic direction) which eventu-
ally increases the complexity of the input polynomials.
In particular, if we are only interested in “local” solu-
tions within a given box, such methods induce a huge
overhead of purely symbolic computations. The pro-
posed algorithm constitutes a contribution in two re-
spects: The number of symbolic steps are crucially re-
duced and partially (resultant computation) outsourced
to the GPU. In addition, generic and non-generic situ-
ations are treated in the same manner and, thus, a co-
ordinate transformation which induces an overhead of
symbolic computations is no longer needed.

2 Setting

The input of our algorithm is the following polynomial
system

(2.1)


f(x, y) =

∑
i,j∈N:i+j≤m

fijx
iyj = 0,

g(x, y) =
∑

i,j∈N:i+j≤n

gijx
iyj = 0,

where f , g ∈ Z[x, y] are polynomials of total degrees m
and n, respectively. We also write

f(x, y) =
mx∑
i=0

f
(x)
i (y)xi =

my∑
i=0

f
(y)
i (x)yi and

g(x, y) =
nx∑
i=0

g
(x)
i (y)xi =

ny∑
i=0

g
(y)
i (x)yi,

where f (y)
i , g(y)

i ∈ Z[x], f (x)
i , g(x)

i ∈ Z[y] and mx, nx
and my, ny denote the degrees of f and g considered
as polynomials in x and y, respectively. Throughout
the paper, it is assumed that f and g have no common
factors.4 Hence, the set VC := {(x, y) ∈ C2|f(x, y) =

4Otherwise, f and g have to be decomposed into common and

non-common factors (not part of our algorithm).



g(x, y) = 0} of (complex) solutions of (2.1) is zero-
dimensional and consists, by Bézout’s theorem, of at
most m · n distinct elements.

Our algorithm outputs disjoint boxes Bk ⊂ R2 such
that the union of all Bk contains all real solutions

VR := {(x, y) ∈ R2|f(x, y) = g(x, y) = 0} = VC ∩ R2

of (2.1) and each Bk is isolating, that is, it contains
exactly one solution.

Notation. For an interval I = (a, b) ⊂ R, mI :=
(a + b)/2 denotes the center and rI := (b − a)/2 the
radius of I. For an arbitrary m ∈ C and r ∈ R+, ∆r(m)
denotes the disc with center m and radius r.

3 The Algorithm

3.1 Resultants Our method is based on well known
elimination techniques. We consider the projections

V
(x)

C := {x ∈ C|∃y ∈ C with f(x, y) = g(x, y) = 0},

V
(y)

C := {y ∈ C|∃x ∈ C with f(x, y) = g(x, y) = 0}

of all complex solutions VC onto the x- and y-coordinate.
Resultant computation is a well studied tool to obtain
an algebraic description of these projection sets, that is,
polynomials whose roots are exactly the projections of
the solution set VC. The resultant R(y) = res(f, g, y) of
f and g with respect to the variable y is the determinant
of the (my + ny)× (my + ny) Sylvester matrix :

S(y)(f, g) :=



f(y)
my

f
(y)
my−1 . . . f

(y)
0 0 . . . 0

.

.

.
. . .

. . .
. . .

.

.

.

0 . . . 0 f(y)
my

f
(y)
my−1 . . . f

(y)
0

g(y)
ny

g
(y)
ny−1 . . . g

(y)
0 0 . . . 0

.

.

.
. . .

. . .
. . .

.

.

.

0 . . . 0 g(y)
ny

g
(y)
ny−1 . . . g

(y)
0


From the definition, it follows that R(y) ∈ Z[x] has
degree less than or equal to m · n. The resultant
R(x) = res(f, g, x) of f and g with respect to x is defined
in completely analogous manner by considering f and g
as polynomials in x instead of y. As mentioned above
the resultant polynomials have the following important
property (cf. [4] for a proof):

Theorem 3.1. The roots of R(y) are exactly the pro-
jections of the solutions of (2.1) onto the x-coordinate
and the roots of the greatest common divisor h(y)(x) :=
gcd(fmy (x), gny (x)) of the leading coefficients of f
and g. More precisely,

{x ∈ C|R(y)(x) = 0} = V
(x)

C ∪ {x ∈ C|h(y)(x) = 0}

For R(y), a corresponding result holds:

{y ∈ C|R(x)(y) = 0} = V
(y)

C ∪ {y ∈ C|h(x)(y) = 0},

where h(x)(y) := gcd(fmx
(y), gnx

(y)). The multiplicity
of a root α of R(y) (R(x)) is the sum5 of the intersection
multiplicities6 of all solutions of (2.1) with x-coordinate
(y-coordinate) α.

3.2 Isolating the Solutions: Project, Separate
and Validate We start with the following high level
description of the proposed algorithm which decomposes
into three subroutines: In the first step (Project), we
project the complex solutions VC of (2.1) onto the x-
and onto the y-axis. More precisely, we compute the
restrictions V (x)

R := V
(x)

C ∩R and V (y)
R := V

(y)
C ∩R. of the

complex projection sets V (x)
C and V

(y)
C to the real axes

and isolating intervals for their elements. Obviously,
the real solutions VR are contained in the cross product
C := V

(x)
R ×V (y)

R ⊂ R2. In the second step (Separate),
we compute isolating discs which well separate the
projected solutions from each other. The latter prepares
the third step (Validate) in which candidates of C are
either discarded or certified to be a solution of (2.1).
Our main theoretical contribution is the introduction
of a novel predicate to ensure that a certain candidate
(α, β) ∈ C ∩ VR actually fulfills f(α, β) = g(α, β) = 0
(cf. Theorem 3.4). For all candidates (α, β) ∈ C\VR,
simple interval arithmetic suffices to exclude (α, β) as a
solution of (2.1).

We remark that, in order to increase the efficiency
of our implementation, we also introduce additional
filtering techniques to eliminate many of the candidates
in C. However, for the sake of clarity, we refrain from
integrating our filtering techniques in the following de-
scription of the three subroutines. Filtering techniques
are covered separately in Section 4.2. Section 4.1 briefly
discusses a highly parallel algorithm on the graphics
hardware to accelerate computations of the resultants
needed in the first step.

Project: We compute the resultant R := R(y) =
res(f, g, y) ∈ Z[x] and a square-free factorization of R.
More precisely, we determine square-free and pairwise
coprime factors ri ∈ Z[x], i = 1, . . . ,deg(R), such that
R(x) =

∏deg(R)
i=1 (ri(x))i. We remark that, for some

5For a root α of h(y)(x) (or h(x)(y)), the intersection multi-

plicity of f and g at the ”infinite point” (α,∞) (or (∞, α)) has

also been taken into account. For simplicity, we decided not to
consider the more general projective setting.

6The multiplicity of a solution (x0, y0) of (2.1) is defined

as the dimension of the localization of C[x, y]/(f, g) at (x0, y0)
considered as C-vector space (cf. [4, p.148])



i ∈ {1, . . . ,deg(R)}, ri(x) = 1. Yun’s algorithm [18,
Alg. 14.21] constructs such a square-free factorization
by essentially computing greatest common divisors
of R and its higher derivatives in an iterative way.
Next, we isolate the real roots αi,j , j = 1, . . . , `i, of
the polynomials ri. That is, we determine disjoint
isolating intervals I(αi,j) ⊂ R such that each interval
I(αi,j) contains exactly one root (namely, αi,j) of
ri and the union of all I(αi,j), j = 1, . . . , `i, covers
all real roots of ri. For the real root isolation, we
consider the Descartes method [10, 31] as a suited
algorithm. From the square-free factorization we know
that αi,j , j = 1, . . . , `i, is a root of R with multiplicity i.

Separate: We separate the real roots of R = R(y) from
all other (complex) roots of R, a step which is crucial
for the final validation. More precisely, let α = αi0,j0
be the j0-th real root of the polynomial ri0 , where
i0 ∈ {1, . . . ,deg(R)} and j0 ∈ {1, . . . , `i0} are arbitrary
indices. We refine the corresponding isolating interval
I = (a, b) := I(α) such that the disc ∆8rI

(mI) does not
contain any root of R(y) except α. For the refinement
of I, we use quadratic interval refinement (QIR for
short) [1, 24] which constitutes a highly efficient method
because of its simple tests and the fact that it eventually
achieves quadratic convergence.

In order to test whether the disc ∆8rI
(mI) isolates

α from all other roots of R, we consider an approach
which was first introduced in [35]. It is based on the
following test:

T pK(m, r) : |p(m)| −K
∑
k≥1

∣∣∣∣p(k)(m)
k!

∣∣∣∣ rk > 0,

where p ∈ R[x] denotes an arbitrary polynomial and m,
r, K arbitrary real values. Then, the following theorem
holds:7

Theorem 3.2. Consider a disk ∆ = ∆m(r) ⊂ C with
center m and radius r.

1. If T pK(m, r) holds for some K ≥ 1, then the closure
∆ of ∆ contains no root of p.

2. If T p
′

K (m, r) holds for a K ≥
√

2, then ∆ contains
at most one root of p.

Proof. (1) follows from a straightforward computation:
For each z ∈ ∆, we have

p(z) = p(m+ (z −m)) = p(m) +
∑
k≥1

p(k)(m)
k!

(z −m)k

7For a similar result, the reader may also consider [34] where
a corresponding test is introduced which is based on interval

arithmetic only.

and, thus,

|p(z)|
|p(m)|

≥ 1− 1
|p(m)|

·
∑
k≥1

|p(k)(m)|
k!

|z−m|k >
(

1− 1
K

)

since |z − m| ≤ r and T pK(m, r) holds. In particular,
for K ≥ 1, the above inequality implies |p(z)| > 0 and,
thus, p has no root in ∆.

It remains to show (2): If T p
′

K (m, r) holds, then,
for any point z ∈ ∆, the derivative p′(z) differs from
p′(m) by a complex number of absolute value less than
|p′(m)|/K. Consider the triangle spanned by the points
0, p′(m) and p′(z), and let α and β denote the angles
at the points 0 and p′(z), respectively. From the Sine
Theorem, it follows that

| sinα| = |p′(m)− p′(z)| · | sin γ|
|p′(m)|

<
1
K
.

Thus, the arguments of p′(m) and p′(z) differ by less
than arcsin(1/K) which is smaller than or equal to π/4
for K ≥

√
2. Assume that there exist two roots a, b ∈ ∆

of p. Since a = b implies p′(a) = 0, which is not possible
as T p

′

1 (m, r) holds, we can assume that a 6= b. We split
f into its real and imaginary part, that is, we consider
p(x + iy) = u(x, y) + iv(x, y) where u, v : R2 → R are
two bivariate polynomials. Then, p(a) = p(b) = 0 and
so u(a) = v(a) = u(b) = v(b) = 0. But u(a) = u(b) = 0
implies, due to the Mean Value Theorem in several real
variables, that there exists a φ ∈ [a, b] such that

∇u(φ) ⊥ (b− a).

Similarly, v(a) = v(b) = 0 implies that there exists a
ξ ∈ [a, b] such that ∇v(ξ) ⊥ (b − a). But ∇v(ξ) =
(vx(ξ), vy(ξ)) = (−uy(ξ), ux(ξ)), thus, it follows that
∇u(ξ) ‖ (b − a). Therefore, ∇u(ψ) and ∇u(ξ) must be
perpendicular. Since p′ = ux + ivx = ux − iuy, the
arguments of p′(ψ) and p′(ξ) must differ by π/2. This
contradicts our above result that both differ from the
argument of p′(m) by less than π/4, thus, (2) follows.�

Theorem 3.2 now directly applies to the above
scenario, where p = ri0 and r = 8rI . More precisely, I

is refined until T (ri0 )′

3/2 (mI , 8rI) and T ri
1 (mI , 8rI) holds

for all i 6= i0. If the latter two conditions are fulfilled,
∆8rI

(mI) isolates α from all other roots of R. In this
situation, we obtain a lower bound LB(α) for |R(z)| on
the boundary of ∆(α) := ∆2rI

(mI):

Lemma 3.1. Let I be an interval which contains a root
α of ri0 . If T (ri0 )′

3/2 (mI , 8rI) and T ri
1 (mI , 8rI) holds for

all i 6= i0, then the disc ∆(α) = ∆2rI
(mI) isolates α



from all other (complex) roots of R and, for any z on
the boundary ∂∆(α) of ∆(α), it holds that

|R(z)| > LB(α) := 2−i0−deg(R)|R(mI − 2rI)|.

Proof. ∆(α) is isolating as already ∆8rI
(mI) is isolat-

ing. Then, let β 6= α be an arbitrary root of R and
d := |β − mI | > 8rI the distance between β and mI .
Then, for any point z ∈ ∂∆(α), it holds that

|z − β|
|(mI − 2rI)− β|

>
d− 2rI
d+ 2rI

= 1− 4rI
d+ 2rI

>
1
2

and
|z − α|

|(mI − 2rI)− α|
>

rI
3rI

>
1
4
.

Hence, it follows that

|R(z)|
|R(mI − 2rI)|

>

(
|z − α|

|(mI − 2rI)− α|

)i0
·∏

β 6=α: R(β)=0

|z − β|
|(mI − 2rI)− β|

> 4−i02− deg(R)+i0 ,

where each root β occurs as many times in the above
product as its multiplicity as a root of R. �

We compute LB(α) = 2−i0−deg(R)|R(mI − 2rI)|
and store the interval I(α), the disc ∆(α) and the
lower bound LB(α) for |R(z)| on the boundary ∂∆(α)
of ∆(α).

Proceeding in exactly the same manner for each
real root α of R(y), we get an isolating interval I(α),
an isolating disc ∆(α) = ∆2rI

(mI) and a lower bound
LB(α) for |R(y)| on ∂∆(α). For the resultant poly-
nomial R(x), Project and Separate are processed
in exactly the same manner: We compute R(x) and
a corresponding square-free factorization. Then, for
each real root β of R(x), we compute a corresponding
isolating interval I(β), a disc ∆(β) and a lower bound
LB(β) for |R(x)| on ∂∆(β).

Validate: We start with the following theorem:

Theorem 3.3. Let α and β be arbitrary real roots of
R(y) and R(x), respectively. Then,

1. the polydisc ∆(α, β) := ∆(α)×∆(β) ⊂ C2 contains
at most one (complex) solution of (2.1). If ∆(α, β)
contains a solution of (2.1), then this solution is
real valued and equals (α, β).

2. For an arbitrary point (z1, z2) ∈ C2 on the bound-
ary of ∆(α, β), it holds that

|R(y)(z1)| > LB(α) if z1 ∈ ∂∆(α), and

|R(x)(z2)| > LB(β) if z2 ∈ ∂∆(β).

Proof. (1) is an easy consequence from the construction
of the discs ∆(α) and ∆(β). Namely, if ∆(α, β) contains
two distinct solutions of (2.1), then they would differ in
at least one coordinate. Thus, one of the discs ∆(α)
or ∆(β) would contain two roots of R(y) or R(x). Since
both discs are isolating for a root of the corresponding
resultant polynomial, it follows that ∆(α, β) contains
at most one solution. In the case, where ∆(α, β)
contains a solution of (2.1), this solution must be
real since, otherwise, ∆(α, β) would also contain a
corresponding complex conjugate solution (f and g have
real valued coefficients). (2) follows directly from the
definition of ∆(α, β), the definition of LB(α), LB(β)
and Lemma 3.1. �

We denote B(α, β) = I(α)× I(β) ⊂ R2 a candidate
box for a real solution of (2.1), where α and β are
real roots of R(y) and R(x), respectively. Due to
Theorem 3.3, the corresponding ”container polydisc”
∆(α, β) ⊂ C2 either contains no solution of (2.1)
or (α, β) is the only solution contained in ∆(α, β).
Hence, for each candidate pair (α, β) ∈ C, it suffices to
show that either (α, β) is no solution of (2.1) or the
corresponding polydisc ∆(α, β) contains at least one
solution. In the following steps, we fix the polydiscs
∆(α, β) whereas the boxes B(α, β) are further refined
(by further refining the isolating intervals I(α) and
I(β)). We also introduce exclusion and inclusion pred-
icates such that, for sufficiently small B(α, β), either
(α, β) can be discarded or certified as a solution of (2.1).

In order to exclude a candidate box, we use sim-
ple interval arithmetic. More precisely, we evaluate
�f(B(α, β)) and �g(B(α, β)), where �f and �g con-
stitute box functions for f and g, respectively: If either
�f(B(α, β)) or �g(B(α, β)) does not contain zero, then
(α, β) cannot be a solution of (2.1). Vice versa, if (α, β)
is not a solution and B(α, β) becomes sufficiently small,
then either 0 /∈ �f(B(α, β)) or 0 /∈ �g(B(α, β)) and
our exclusion predicate applies.

It remains to provide an inclusion predicate, that is,
a method to ensure that a certain candidate (α, β) ∈ C
is actually a solution of (2.1). We first rewrite the
resultant polynomial R(y) as

R(y)(x) = u(y)(x, y) · f(x, y) + v(y)(x, y) · g(x, y),



where u(y), v(y) ∈ Z[x, y], that can be expressed as
determinants of ”Sylvester-like” matrices:

U (y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f
(y)
my f

(y)
my−1,y . . . f

(y)
0 0 . . . yny−1

...
. . .

. . .
. . .

...

0 . . . 0 f
(y)
my f

(y)
my−1 . . . 1

g
(y)
ny g

(y)
ny−1 . . . g

(y)
0 0 . . . 0

...
. . .

. . .
. . .

...

0 . . . 0 g
(y)
ny g

(y)
ny−1 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

V (y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f
(y)
my f

(y)
my−1 . . . f

(y)
0 0 . . . 0

...
. . . . . . . . .

...
0 . . . 0 f

(y)
my f

(y)
my−1 . . . 0

g
(y)
ny g

(y)
ny−1 . . . g

(y)
0 0 . . . ymy−1

...
. . . . . . . . .

...
0 . . . 0 g

(y)
ny g

(y)
ny−1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
U (y) and V (y) are obtained from S(y)(f, g) by replac-
ing the last column with vectors (yny−1 . . . 1 0 . . . 0)T

and (0 . . . 0 ymy−1 . . . 1)T of appropriate size, respec-
tively [19, p. 287]. Both matrices have size (ny +my)×
(ny + my) and univariate polynomials in x (the first
ny +my − 1 columns) or powers of y (only the last col-
umn) or zeros as entries. We now aim for upper bounds
for |u(y)| and |v(y)| on the polydisc ∆(α, β). The poly-
nomials u(y) and v(y) have huge coefficients and their
computation, either via a signed remainder sequence or
via determinant evaluation, is very costly. Hence, we di-
rectly derive such upper bounds from the corresponding
matrix representations without computing u(y) and
v(y): Due to Hadamard’s bound, |u(y)| is smaller than
the product of the 2-norms of the column vectors of
U (y). The absolute value of each of the entries of U (y)

can be easily upper bounded by using interval arith-
metic on a box in C2 that contains the polydisc ∆(α, β).
Hence, we get an upper bound on the 2−norm of each
column vector and, thus, an upper bound UB(α, β, u(y))
for |u(y)| on ∆(α, β) by multiplying the bounds for the
column vectors. In the same manner, we also derive an
upper bound UB(α, β, v(y)) for |v(y)| on ∆(α, β). With
respect to our second projection direction, we write
R(x) = u(x) · f + v(x) · g with corresponding polynomi-
als u(x), v(x) ∈ Z[x, y]. In exactly the same manner as
done for R(y), we compute corresponding upper bounds
UB(α, β, u(x)) and UB(α, β, v(x)) for |u(x)| and |v(x)| on
∆(α, β).

Theorem 3.4. If there exists an (x0, y0) ∈ ∆(α, β)
with

(3.2)
UB(α, β, u(y)) · |f(x0, y0)| +
UB(α, β, v(y)) · |g(x0, y0)| < LB(α)

(3.3)
UB(α, β, u(x)) · |f(x0, y0)| +
UB(α, β, v(x)) · |g(x0, y0)| < LB(β),

then ∆(α, β) contains a solution of (2.1) and, thus,
f(α, β) = 0.

Proof. The proof uses a homotopy argument. Namely,
we consider the parameterized system

(3.4)
f(x, y)− (1− t) · f(x0, y0) =
g(x, y)− (1− t) · g(x0, y0) = 0,

where t is an arbitrary real value in [0, 1]. For t = 1,
(3.4) is equivalent to our initial system (2.1). For t = 0,
(3.4) has a solution in ∆(α, β), namely, (x0, y0). The
complex solutions of (3.4) continuously depend on the
parameter t. Hence, there exists a “solution path”
Γ : [0, 1] 7→ C2 which connects Γ(0) = (x0, y0) with
a solution Γ(1) ∈ C2 of (2.1). We show that Γ(t)
does not leave the polydisc ∆(α, β) and, thus, (2.1)
has a solution in ∆(α, β): Assume that the path Γ(t)
leaves the polydisc, then there exists a t′ ∈ [0, 1] with
(x′, y′) = Γ(t′) ∈ ∂∆(α, β). We assume that x′ ∈ ∂∆(α)
(the case y′ ∈ ∂∆(β) is treated in analogous manner).
Since (x′, y′) is a solution of (3.4) for t = t′, we must
have |f(x′, y′)| ≤ |f(x0, y0)| and |g(x′, y′)| ≤ |g(x0, y0)|.
Hence, it follows that

|R(y)(x′)| = |u(y)(x′, y′)f(x′, y′) + v(y)(x′, y′)g(x′, y′)|
≤ |u(y)(x′, y′)| · |f(x′, y′)|+
|v(y)(x′, y′)| · |g(x′, y′)|

≤ UB(α, β, u(y)) · |f(x0, y0)|+
UB(α, β, v(y)) · |g(x0, y0)|

< LB(α).

This contradicts the fact that |R(y)(x′)| is lower
bounded by LB(α). It follows that ∆(α, β) contains
a solution of (2.1) and, according to Theorem 3.3, this
solution must be (α, β). �

Theorem 3.4 now directly applies as an inclusion
predicate. Namely, in each refinement of B(α, β), we
choose an arbitrary (x0, y0) ∈ B(α, β) (e.g., the center
(mI(α),mI(β))) of the candidate box B(α, β)) and check
whether both inequalities (3.2) and (3.3) are fulfilled.
If (α, β) is a solution of (2.1), then both inequalities
eventually hold and, thus, we have shown that (α, β) is
a solution.

We remark that the upper bounds UB(α, β, u(y)),
UB(α, β, v(y)), UB(α, β, u(x)) and UB(α, β, v(y)) are far
from being optimal. Nevertheless, our inclusion predi-
cate is still efficient since we can approximate the po-
tential solution (α, β) with quadratic convergence due



to QIR. Hence, the values f(x0, y0) and g(x0, y0) be-
come very small after a few iterations. In order to
improve the above upper bounds, we propose to con-
sider more sophisticated methods from numerical anal-
ysis and matrix perturbation theory [22, 32]. Finally,
we would like to emphasize that our method applies
particularly well to the situation where we are only in-
terested in the solutions of (2.1) within a given box
B = [A,B] × [C,D] ⊂ R2. Though R(y) (R(x)) capture
all (real and complex) projections of the solutions of the
system, we only have to search the real ones contained
within the interval [A,B] ([C,D]). Then, only candidate
boxes within B have to be considered in Separate and
Validate. Since the computation of the resultants is
relatively cheap due to our fast implementation on the
GPU our method is particularly well suited to search
for local solutions.

4 Speedups

4.1 Resultants on graphics hardware Comput-
ing the resultants of bivariate polynomials is an impor-
tant “symbolic part” of our algorithm. Despite a large
body of research existing on this subject, symbolic com-
putations still constitute a large bottleneck in many al-
gorithms and substantially limit their range of applica-
bility. We use a novel approach exploiting the power
of GPUs to dramatically reduce the time for comput-
ing resultants. In this section, we briefly discuss the
algorithm; we refer the reader to [17, 16] for details.

Our approach is based on the classical “divide-
conquer-combine” modular algorithm by Collins [9].
The algorithm can be summarized in the following steps.
1. Apply modular and evaluation homomorphisms to
map the problem to computing a large set of problems
over a simple domain. 2. Compute a set of resultants
over a prime field. 3. Recover the resultant through
polynomial interpolation and Chinese remaindering.

Unfortunately, Collins’ algorithm in its original
form is not suitable for a realization on the GPU.
This is because the amount of parallelism exposed by a
modular algorithm is still too low to satisfy the needs of
the massively-threaded architecture. To overcome this
limitation we reduce the problem to computations with
structured matrices because matrix operations typically
map very well to the GPU’s threading model. When the
problem is expressed in terms of linear algebra, all data
dependencies are usually made explicit (though at the
cost of some additional work) allowing for fine-grained
parallelism which is a key ingredient in implementing
the GPU algorithm.

As a result, all steps of the algorithm except the ini-
tial modular reduction and partly the Chinese remain-
dering are run on the graphics hardware, thereby mini-

mizing the amount of work to be done on the CPU. For
expository purposes, we outline here the computation
of univariate resultants in more detail.8

Suppose, f and g are polynomials in Z[x] of degrees
m and n, respectively. It is clear that the resultant
of f and g reduces to the triangular factorization of
the Sylvester matrix S (see Section 3.1). The matrix
S ∈ Zr×r (r = m + n) is structured as it satisfies the
displacement equation [23]:

S − ZrSAT = GBT ,

with A = Zm ⊕ Zn and G,B ∈ Zr×2, where Zs ∈ Zs×s
is a down-shift matrix zeroed everywhere except for 1’s
on the first subdiagonal. Accordingly, the generators
G,B are matrices whose entries can be deduced from
the matrix S by inspection. Hence, we can apply
the generalized Schur algorithm which operates on the
matrix generators to compute the matrix factorization
in O(r2) time; see [23, p. 323].

In short, the Schur algorithm is an iterative proce-
dure: In each step, it brings the matrix generators in a
“special form” from which triangular factors can easily
be deduced based on the displacement equation. Using
division-free modifications this procedure can be per-
formed in a finite field giving rise to the factorization
algorithm running in O(r) time using r processors.

Although, the theoretical background of the algo-
rithm is well-established, it does not say much about
the realization. To give the basic idea, observe that,
there are two levels of parallelism available on the graph-
ics processor. Block-level parallelism allows numer-
ous thread blocks to execute concurrently without an
explicit communication (or synchronization) between
them. In its turn, threads from the same block are also
executed in parallel and can communicate using syn-
chronization barriers and shared memory. The latter
one is referred to as thread-level parallelism. Suppose
that we have applied modular and evaluation homomor-
phisms to reduce the problem to computing N univari-
ate resultants for each of M moduli. Hence, we can
launch a grid of N ×M thread blocks where each in-
dividual block computes one univariate resultant using
the Schur algorithm above. The pseudocode for (se-
quential) algorithm can be found in [16, Section 4.2].
Now, exploiting thread-level parallelism, we assign one
thread to one row of each of the generator matrices, that
is, to four elements (because G,B ∈ Zr×2). In each iter-
ation, one thread updates its associated generator rows
(multiplies them by 2× 2 transformation matrix). This
explains the basic routine of the algorithm.

8Remark that, the algorithm described in [17, 16] compute re-

sultants of bivariate polynomials, however dealing with univariate

polynomials constitutes a “basic building block” of the algorithm.



It is important to understand that there is a number
of factors governing the performance of the GPU algo-
rithm. These, for instance, include: thread occupancy,
shared memory usage, register pressure, synchroniza-
tion overhead, and a concrete realization of the modular
arithmetic on the GPU. These topics are covered in the
papers cited above.

Once the univariate resultants z(p)
i for each modulus

Zp and each evaluation point xi ∈ Zp have been com-
puted, we interpolate the resultant polynomial R(y)(x)
in a prime field Zp and eventually lift it via Chinese re-
maindering to obtain an integer solution. These steps
are also executed (partly) on the GPU. We remark that
polynomial interpolation corresponds to solving a Van-
dermonde system.9 Again, exploiting the structure of
Vandermonde matrix we can use the Schur algorithm to
solve the system in a small parallel time.

4.2 Filters Besides the parallel resultant computa-
tion, our algorithm elaborates a number of filtering tech-
niques to early validate a majority of the candidates.

As first step, we group candidates along the same
vertical line (a fiber) at an x-coordinate α (a root of
R(y)) to process them together. This allows us to use
extra information on the real roots of f(α, y) ∈ R[y] and
g(α, y) ∈ R[y] for candidate validation. We replace the
tests based on interval evaluation (see page 5) by a test
based on the bitstream Descartes isolator [15] (Bdc for
short). This method allows us to isolate the real
roots of a polynomial with “bitstream” coefficients, that
is, coefficients that can be approximated to arbitrary
precision. Bdc starts from an interval guaranteed to
contain all real roots of a polynomial, and proceeds with
interval subdivisions giving rise to a subdivision tree.
Accordingly, the approximation precision for coefficients
is increased in each step of the algorithm. Each leaf
of the tree is associated with an interval and stores
an upper and a lower bound on the number of real
roots within this interval based on Descartes’ Rule of
Signs. An interval is not further subdivided when both
bounds equal 0, where the interval is discarded, or 1,
where we have found an isolating interval. Isolating
intervals can be refined to arbitrary precision. We
remark that Bdc terminates if all real roots are simple.
Otherwise, intervals which contain a multiple root are
further refined but never certified to contain a root.

In our algorithm, we apply Bdc to the polynomials
f(α, y) and g(α, y). Eventually, intervals that do not
share a common root of both polynomials will be

9Here we are not concerned with the fact that Vandemonde

systems are notoriously ill-conditioned since all operations are
performed in a finite field.

discarded. This property is essential for our “filtered”
algorithm: a candidate box B(α, β) can be rejected as
soon as the associated y-interval I(β) does not overlap
with at least one of the isolating intervals associated
with f(α, y) or g(α, y); see Figure 1 (a).

Grouping candidates along a fiber x = α also
enables us to use combinatorial tests to discard or
to certify them. First, when the number of certified
solutions reaches mult(α), the remaining candidates
are automatically discarded because each real solution
contributes at least once to α’s multiplicity as a root
of R(y) (cf. Theorem 3.1). Second, if α is not a root
of the greatest common divisor h(y)(x) of the leading
coefficients of f and g and mult(α) is odd and all except
one candidate along the fiber are discarded, then the
remaining candidate must be a real solution. This is
because complex roots come in conjugate pairs and,
thus, do not change the parity of mult(α). We remark
that, in case where the system (2.1) is in generic position
and the multiplicities of all roots of R are odd, the
combinatorial test already suffices to certify all solutions
without the need to apply our inclusion predicate from
Section 3.

Now, suppose that, after the combinatorial test,
there are several candidates left along a fiber. For in-
stance, the latter can indicate the presence of covertical
solutions. In this case, before using the inclusion predi-
cate, we can apply the aforementioned filters in horizon-
tal direction. More precisely, we construct the lists of
unvalidated candidates sharing the same y-coordinate
β and process them along a horizontal fiber. For this
step, we initialize the bitstream trees for f(x, β) and
g(x, β) and proceed in exactly the same way as done for
vertical fibers; see Figure 1 (b). Candidates that still
remain undecided after all tests are processed by con-
sidering our inclusion predicate. In Section 5, where we
next examine the efficiency of our filters, we will refer
to this procedure as the bidirectional filter.

5 Implementation & Experiments

We have implemented our algorithm as a prototypical
package of Cgal.10 As throughout the library we follow
a generic programming paradigm that, for instance,
enables us to easily exchange the number types used or
the method to isolate the roots of a polynomial without
altering the main structure of the implementation.

In our experiments, we have used the number types
provided by Gmp 4.3.1 and fast polynomial GCD from
Ntl 5.5 library.13 All experiments have been run on
2.8GHz 8-Core Intel Xeon W3530 with 8 MB of L2 cache

10Computational Geometry Algorithms Library, www.cgal.org.
13Gmp: http://gmplib.org, Ntl: http://www.shoup.net/ntl
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Figure 1: (a) Intervals containing the roots of f(α, y) and g(α, y) are refined until they either do not overlap or
are fully included in candidate boxes. In the former case, the boxes can be discarded. (b) Unvalidated candidates
are passed to bidirectional filter which runs bitstream isolation in another direcion

under Linux platform. For the GPU-part of the al-
gorithm, we have used the GeForce GTX480 graphics
processor (Fermi Core). We compared our approach
to the bivariate version of Isolate (based on Rs by
Fabrice Rouillier14) and Lgp by Xiao-Shan Gao et al.15

Both were interfaced using Maple 13. We remark that,
for the important substep of isolating the real roots of
the elimination polynomial, all three contestants (in-
cluding our implementation) use the highly efficient im-
plementation provided by Rs.

Our tests consist of two parts: In the first part,
we consider “special” curves (and their derivative w.r.t.
y-variable) selected in the aim of challenging different
parts of the algorithm and showing the efficiency of
the filtering techniques given in Section 4.2. These
curves, for instance, have many singularities or high-
curvature points which requires many candidates to be
tested along each vertical line, or prohibit the use of
special filters. Descriptions of the considered curves and
corresponding timings are listed in Table 1 and Table 2,
respectively. In the second part of our experiments,
we study the performance of the Bisolve on random
polynomials with increasing total degrees and coefficient
bit-lengths. We refer the reader to Table 3 for the
corresponding timings.

In columns 4–8 of Table 2, the experiments
for our algorithm are given with all filters set on
(BS+allfilters), with bitstream and combinatorial
filter (BS+bstr+comb), with bitstream filter only
(BS+bstr) and with all filters set off (BS). For Bi-
solve, we report timings respectively with and without
GPU resultant algorithm. For the remaining configura-
tions we show only the timings using GPU resultants.

14Rs: http://www.loria.fr/equipes/vegas/rs
15Lgp: http://www.mmrc.iss.ac.cn/~xgao/software.html

CPU-based timings can easly be obtained by taking the
difference between Bisolve-columns.

One can observe that our algorithm is generally
superior to Isolate and Lgp even if the filters are
not used. By comparing columns 5–8 of Table 2, one
can see that filtering sometimes results in a significant
performance improvement. The combinatorial test
is particularly useful when the defining polynomials
of the system (2.1) have large degrees and/or large
coefficient bit-length while at the same time the number
of covertical or singular solutions is small compared to
the total number of candidates being checked. The
bidirectional filter is advantageous when the system has
covertical solutions in one direction (say along y-axis)
which are not cohorizontal. This is essentially the case
for challenge 12, cov sol 20 and spider.

Another strength of our approach relates to the fact
that the amount of symbolic operations is crucially re-
duced. Hence, when the time for computing resultants is
dominating, the GPU-based algorithm offers a speed-up
by the factor of 2-5 over the version with default resul-
tant implementation. It is also worth mentioning that
both Isolate and Lgp benefit from the fast resultant
computation available in Maple while Cgal’s default
resultant computation16 is generally much slower than
that of Maple. As a result, there is a large discrepancy
in columns 4 and 5 for Bisolve.

Table 3 lists timings for experiments with random
curves. Each instance consists of five curves of the same
degree (9 or 15, dense or sparse) and we report the
average time to compute the solutions for one of all
ten pairs of curves. In order to analyze the influence of
the coefficients’ bit-lengths, we multiplied each curve by

16Authors are indebted to Cgal developers working on resul-
tants.



Instance Description

L4 circles circles w.r.t. L4-norm, clustered solutions

curve issac a curve appeared in [8]

tryme covertical solutions, many candidates to check

large curves large number of solutions

degree 6 surf silhouette of an algebraic surface, covertical solutions in both directions

challenge 12* many candidate solutions to be checked

SA 4 4 eps* singular points with high tangencies, displaced

FTT 5 4 4* many non-rational singularities

dfold 10 6* a curve with many half-branches

cov sol 20 covertical solutions

mignotte xy a product of x/y- Mignotte polynomials, displaced; many clustered solutions

spider degenerate curve, many clustered solutions

hard one vertical lines as component of one curve, many candidates to test

grid deg 10 large coefficients, curve in generic position

huge cusp large coefficients, high-curvature points

cusps and flexes high-curvature points

L6 circles 4 circles w.r.t. L6-norm, clustered solutions

ten circles set of 10 random circles multiplied together, rational solutions

curve24 curvature of degree 8 curve, many singularities

compact surf silhouette of an algebraic surface, many singularities, isolated solutions

13 sings 9 large coefficients, high-curvature points

swinnerston dyer covertical solutions in both directions

challenge 12 1* many candidate solutions to be checked

SA 2 4 eps* singular points with high tangencies, displaced

spiral29 24 taylor expansion of a spiral intersecting a curve with many branches, many candidates to check

Table 1: Description of the curves used in the first part of experiments. In case only a single curve given, the
second curve is taken to be the first derivative w.r.t. y-variable. Curves marked with a star (*) are given in [26].

2k with k ∈ {128, 512, 2048} and increased the constant
coefficient by one. Since the latter operation constitutes
only a small perturbation of the vanishing set of the
input system, the number of solutions remains constant
while the content of the polynomials’ coefficients also
stays trivial. We see that the bidirectional filtering
is not of any advantage because the system defined
by random polynomials is unlikely to have covertical
solutions. However, in this case, most candidates are
rejected by the combinatorial check, thereby omitting
(a more expensive) test based on Theorem 3.4. This
results in a clear speed-up over a “non-filtered” version.
Also, observe that GPU-Bisolve is not vulnerable
to increasing the bit-length of coefficients while this
becomes critical for Isolate’s and Lgp’s performance.
We have also observed that, for our filtered versions, the
time for the validation step is almost independent of the
bit-lengths.

We omit experiments to refine the solution boxes to
certain precision as this matches the efficiency of QIR
due to the fact that we have algebraic descriptions for
the solutions’ x- and y-coordinates.

All defining polynomials are archived online
at http://www.mpi-inf.mpg.de/departments/d1/
projects/Geometry/BisolveDatasetAlenex2011.

zip.

6 Summary and Outlook

We propose an exact and complete method to isolate the
real solutions of a bivariate polynomial system. Our
algorithm is designed to reduce the number of purely
symbolic operations as much as possible. Eventually,
only resultant and gcd computation are still needed. By
transferring the resultant computation to the GPU, we
are able to remove a major bottleneck of elimination ap-
proaches. In order to further improve our implementa-
tion, we aim to outsource the square-free factorization
to the GPU as well, a step which seems to be feasi-
ble since factorization is also well suited for a ”divide-
conquer-combine” modular approach. Since our initial
motivation was to speed up the topology and arrange-
ment computation for algebraic curves and surfaces, we
plan to extend our method towards this direction. An-
other promising algorithm has been recently proposed
by Fabrice Rouillier in [30]. It is based on computing
rational univariate representations by means of comput-
ing a subresultant sequence. We expect its implementa-
tion to be available soon and aim for a comparison with
our approach. Furthermore, it would be interesting to
extend our algorithm to handle higher dimensional sys-



BS+allfilters BS+bstr+comb BS+bstr BS Isolate Lgp
Instance y-degree #sols CPU GPU GPU Maple Maple

L4 circles 16 17 2.74 1.68 1.52 1.71 0.68 1.20 7.40

curve issac 15 18 4.30 3.21 2.70 3.47 1.84 70.91 3.54

tryme 24, 34 20 98.56 29.31 31.63 89.83 89.86 167.81 176.86

large curves 24, 19 137 110.20 91.15 90.82 376.71 377.55 501.52 138.35

degree 6 surf 42 13 149.33 17.46 16.50 18.63 62.18 timeout 133.77

challenge 12 40 99 108.74 23.07 27.66 27.20 195.76 41.13 40.86

SA 4 4 eps 33 2 155.92 2.83 2.85 3.81 8.57 296.02 56.30

FTT 5 4 4 40 62 73.89 17.58 20.92 20.99 111.22 timeout 199.92

dfold 10 6 32 21 26.20 4.80 3.12 3.19 3.54 3.14 3.84

cov sol 20 20 8 27.25 12.36 36.10 42.81 52.16 762.80 175.85

mignotte xy 32 30 545.88 438.38 440.64 986.68 1021.50 timeout timeout

spider 28 38 389.06 81.63 87.44 135.15 314.56 timeout timeout

hard one 27, 6 46 8.17 6.95 6.96 12.44 12.09 25.20 20.00

grid deg 10 10 20 4.05 1.63 1.64 3.22 3.01 106.95 3.16

huge cusp 8 24 33.24 21.43 21.15 26.97 26.47 768.56 119.03

cusps and flexes 9 20 2.31 1.37 1.28 1.70 1.38 28.42 2.73

L6 circles 24 18 25.00 6.21 5.68 6.88 5.08 46.61 52.79

ten circles 20 45 10.51 7.64 4.63 4.93 2.57 5.22 5.24

curve24 24 28 41.26 16.61 16.66 118.91 115.62 49.69 41.96

compact surf 18 57 19.01 6.53 5.98 5.85 23.56 timeout 12.31

13 sings 9 9 35 3.38 2.39 2.23 2.98 2.41 28.60 2.97

swinnerston dyer 40 63 50.32 22.60 22.53 22.33 56.46 71.00 28.47

challenge 12 1 30 99 24.67 9.17 9.89 9.44 41.84 41.13 40.86

SA 2 4 eps 17 6 6.71 0.56 0.59 0.70 1.66 7.83 4.90

spiral29 24 29, 24 51 80.37 35.34 35.13 290.35 286.79 144.79 84.97

Table 2: Experiments for the curves listed in Table 1. Execution times are in seconds, including resultant
computations. Bisolve-GPU: our approach with GPU-resultants; Bisolve-CPU: our approach with Cgal’s
CPU-resultants; Isolate and Lgp use Maple’s implementation for the resultant computation. Bold face indicates
default setup for Bisolve and “timeout” a running time > 1500 sec.

tems or complex solutions. Finally, we would like to
investigate in hybrid methods such as the combination
of a numerical complex root solver and an exact post
certification method serving as an additional filter in
the validation step (in the spirit of [38, 33]). We are
convinced that most of the candidate boxes could be
treated even more efficiently by the use of such methods.
We claim that, eventually, the total costs for solving a
bivariate system should only be dominated by those of
the root isolation step for the elimination polynomial.
For many instances, our experiments already hint to
the latter claim. We aim to further improve our imple-
mentation to show this behavior for all instances and to
provide a proof in terms of complexity as well.
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Density of avg. BS+allfilters BS+bstr+comb BS+bstr BS Isolate Lgp
polynomials y-degree shift #sols CPU GPU GPU Maple Maple

dense 9,9

-

5.6

0.30 0.21 0.22 0.21 0.19 0.33 0.24
128 0.48 0.15 0.16 0.15 0.49 0.66 0.93
512 2.22 0.31 0.31 0.31 2.03 1.51 3.33

2048 16.47 2.07 2.06 2.07 13.86 7.48 102.37

dense 15,15

-

5.0

1.82 0.71 0.70 0.71 1.64 6.85 3.88
128 6.02 0.69 0.67 0.67 3.74 14.66 8.31
512 32.18 1.48 1.45 1.48 14.35 38.27 22.36

2048 251.07 8.97 8.94 8.97 94.09 141.69 102.36

sparse 9,9

-

4.5

0.10 0.07 0.07 0.07 0.09 0.07 0.22
128 0.14 0.08 0.08 0.07 0.21 0.20 0.57
512 0.46 0.16 0.15 0.15 0.85 0.70 1.74

2048 3.11 0.84 0.84 0.84 5.86 5.40 7.38

sparse 15,15

-

3.8

0.65 0.36 0.36 0.36 0.66 0.99 1.24
128 1.55 0.46 0.47 0.46 1.50 4.68 3.51
512 7.70 1.55 1.55 1.55 6.80 16.01 11.93

2048 58.97 13.45 13.38 13.46 51.14 132.76 74.03

Table 3: Averaged running times for 10 pairs of curves defined by random polynomials of degree 9 and 15 with
increasing bit-lengths (given by shift parameter). For description of configurations, see Table 2.
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